A056552 Powerfree kernel of cubefree part of n.
1, 2, 3, 2, 5, 6, 7, 1, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 3, 5, 26, 1, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 5, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 2, 55, 7, 57, 58, 59, 30, 61, 62, 21, 1, 65, 66, 67, 34, 69, 70, 71, 3, 73, 74, 15, 38, 77
Offset: 1
Examples
a(32) = 2 because cubefree part of 32 is 4 and powerfree kernel of 4 is 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Henry Bottomley, Some Smarandache-type multiplicative sequences.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^If[Divisible[e, 3], 0, 1]; a[n_] := Times @@ (f @@@ FactorInteger[ n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
-
PARI
a(n) = my(f=factor(n)); for (k=1, #f~, if (frac(f[k,2]/3), f[k,2] = 1, f[k,2] = 0)); factorback(f); \\ Michel Marcus, Feb 28 2019
Formula
a(n) = A007947(A050985(n)) = A019555(A050985(n)) = n/(A053150(n)*A000189(n)) = A019555(n)/A053150(n) = A056551(n)^(1/3).
If n = Product_{j} Pj^Ej then a(n) = Product_{j} Pj^Fj, where Fj = 0 if Ej is 0 or a multiple of 3 and Fj = 1 otherwise.
Multiplicative with a(p^e) = p^(if 3|e, then 0, else 1). - Mitch Harris, Apr 19 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.3480772773... . - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 16 2023