cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056552 Powerfree kernel of cubefree part of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 1, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 3, 5, 26, 1, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 5, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 2, 55, 7, 57, 58, 59, 30, 61, 62, 21, 1, 65, 66, 67, 34, 69, 70, 71, 3, 73, 74, 15, 38, 77
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(32) = 2 because cubefree part of 32 is 4 and powerfree kernel of 4 is 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] :=  p^If[Divisible[e, 3], 0, 1]; a[n_] := Times @@ (f @@@ FactorInteger[ n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, if (frac(f[k,2]/3), f[k,2] = 1, f[k,2] = 0)); factorback(f); \\ Michel Marcus, Feb 28 2019

Formula

a(n) = A007947(A050985(n)) = A019555(A050985(n)) = n/(A053150(n)*A000189(n)) = A019555(n)/A053150(n) = A056551(n)^(1/3).
If n = Product_{j} Pj^Ej then a(n) = Product_{j} Pj^Fj, where Fj = 0 if Ej is 0 or a multiple of 3 and Fj = 1 otherwise.
Multiplicative with a(p^e) = p^(if 3|e, then 0, else 1). - Mitch Harris, Apr 19 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.3480772773... . - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 16 2023