cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056566 Fibonomial coefficients.

Original entry on oeis.org

1, 34, 1870, 83215, 3994320, 186135312, 8771626578, 411591708660, 19344810307020, 908637119420910, 42689423937884208, 2005443612183077232, 94214069697350815795, 4426039514623184676790, 207929935924379904006970, 9768275694729434277258589, 458901121999204061365680096
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Crossrefs

Cf. A010048, A000045, A001654-8, A056565, A001906 (signed), A004187, A049660 (signed), A049668.

Programs

  • Mathematica
    a[n_] := (1/65520) Times @@ Fibonacci[n + Range[8]]; Array[a, 20, 0] (* Giovanni Resta, May 08 2016 *)
  • PARI
    b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
    vector(20, n, b(n-1, 8)) \\ Joerg Arndt, May 08 2016

Formula

a(n) = A010048(n+8, 8) = Fibonomial(n+8, 8).
G.f.: 1/p(9, n) with p(9, n)= 1 - 34*x - 714*x^2 + 4641*x^3 + 12376*x^4 - 12376*x^5 - 4641*x^6 + 714*x^7 + 34*x^8 - x^9 = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2)* (1 + 18*x + x^2)*(1 - 47*x + x^2) (n=9 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references).
Recursion: a(n) = 47*a(n-1) - a(n-2) + ((-1)^n)*A001658(n), n >= 2, a(0)=1, a(1)=34.
G.f.: exp( Sum_{k>=1} F(9*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025