A056566 Fibonomial coefficients.
1, 34, 1870, 83215, 3994320, 186135312, 8771626578, 411591708660, 19344810307020, 908637119420910, 42689423937884208, 2005443612183077232, 94214069697350815795, 4426039514623184676790, 207929935924379904006970, 9768275694729434277258589, 458901121999204061365680096
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Mathematica
a[n_] := (1/65520) Times @@ Fibonacci[n + Range[8]]; Array[a, 20, 0] (* Giovanni Resta, May 08 2016 *)
-
PARI
b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); vector(20, n, b(n-1, 8)) \\ Joerg Arndt, May 08 2016
Formula
a(n) = A010048(n+8, 8) = Fibonomial(n+8, 8).
G.f.: 1/p(9, n) with p(9, n)= 1 - 34*x - 714*x^2 + 4641*x^3 + 12376*x^4 - 12376*x^5 - 4641*x^6 + 714*x^7 + 34*x^8 - x^9 = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2)* (1 + 18*x + x^2)*(1 - 47*x + x^2) (n=9 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references).
Recursion: a(n) = 47*a(n-1) - a(n-2) + ((-1)^n)*A001658(n), n >= 2, a(0)=1, a(1)=34.
G.f.: exp( Sum_{k>=1} F(9*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025