A056578 a(n) = 1 + 2*n + 3*n^2 + 4*n^3.
1, 10, 49, 142, 313, 586, 985, 1534, 2257, 3178, 4321, 5710, 7369, 9322, 11593, 14206, 17185, 20554, 24337, 28558, 33241, 38410, 44089, 50302, 57073, 64426, 72385, 80974, 90217, 100138, 110761, 122110, 134209, 147082, 160753, 175246, 190585, 206794, 223897, 241918
Offset: 0
Examples
For n>4 this is 4321 translated from base n to base 10.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Mathematica
f[n_]:=1+2*n+3*n^2+4*n^3; lst={}; Do[AppendTo[lst,f[n]],{n,0,5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
Formula
G.f.: (1 + 6*x + 15*x^2 + 2*x^3)/(1-x)^4. - Colin Barker, Jan 10 2012
From Elmo R. Oliveira, Apr 20 2025: (Start)
E.g.f.: exp(x)*(1 + 9*x + 15*x^2 + 4*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Extensions
More terms from Elmo R. Oliveira, Apr 20 2025