A056579
1+2n+3n^2+4n^3+5n^4.
Original entry on oeis.org
1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, 35983, 54321, 78915, 111049, 152127, 203673, 267331, 344865, 438159, 549217, 680163, 833241, 1010815, 1215369, 1449507, 1715953, 2017551, 2357265, 2738179, 3163497, 3636543
Offset: 0
For n>5 this is 54321 translated from base n to base 10
-
Join[{1},Table[Total[Table[i n^(i-1),{i,5}]],{n,30}]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,15,129,547,1593},30] (* Harvey P. Dale, Sep 20 2017 *)
-
a(n)=1+2*n+3*n^2+4*n^3+5*n^4 \\ Charles R Greathouse IV, Oct 07 2015
A123059
Primes of the form 1 + 2*k + 3*k^2 + 4*k^3.
Original entry on oeis.org
313, 7369, 11593, 24337, 44089, 57073, 90217, 160753, 570649, 964969, 1060993, 1916617, 3349033, 4532113, 5360521, 6614137, 7308289, 9252409, 11035081, 12006433, 14680513, 15852457, 16461121, 22654417, 29318833, 34083913, 39339193, 41583937, 42737641, 51416353
Offset: 1
-
[ a: n in [0..300] | IsPrime(a) where a is 1+2*n+3*n^2+4*n^3 ]; // Vincenzo Librandi, Dec 17 2010
-
Select[Total/@Table[(Range[4]n^Range[0,3]),{n,250}],PrimeQ] (* Harvey P. Dale, Jan 18 2011 *)
A059045
Square array T(n,k) read by antidiagonals where T(0,k) = 0 and T(n,k) = 1 + 2k + 3k^2 + ... + n*k^(n-1).
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 49, 34, 9, 1, 0, 1, 21, 129, 142, 57, 11, 1, 0, 1, 28, 321, 547, 313, 86, 13, 1, 0, 1, 36, 769, 2005, 1593, 586, 121, 15, 1, 0, 1, 45, 1793, 7108, 7737, 3711, 985, 162, 17, 1, 0, 1, 55, 4097, 24604, 36409
Offset: 0
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 6, 17, 34, 57, 86, 121, 162, 209, ...
1, 10, 49, 142, 313, 586, 985, 1534, 2257, ...
1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, ...
1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, ...
1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, ...
A113630
1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8.
Original entry on oeis.org
1, 45, 4097, 83653, 757305, 4272461, 17736745, 59409477, 169826513, 429794605, 987654321, 2098573445, 4178995657, 7879732173, 14181546905, 24517448581, 40926266145, 66242446637, 104327377633, 160347899205, 241108033241
Offset: 0
a(3) = 1 + 2*3 + 3*3^2 + 4*3^3 + 5*3^4 + 6*3^5 + 7*3^6 + 8*3^7 + 9*3^8 = 83653 is prime.
a(5) = 1 + 2*5 + 3*5^2 + 4*5^3 + 5*5^4 + 6*5^5 + 7*5^6 + 8*5^7 + 9*5^8 = 4272461 is prime.
a(8) = 1 + 2*8 + 3*8^2 + 4*8^3 + 5*8^4 + 6*8^5 + 7*8^6 + 8*8^7 + 9*8^8 = 169826513 is prime.
a(23) = 1 + 2*23 + 3*23^2 + 4*23^3 + 5*23^4 + 6*23^5 + 7*23^6 + 8*23^7 + 9*23^8 = 733113789893 is prime.
- Chai Wah Wu, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
a113630 n = sum $ zipWith (*) [1..9] $ iterate (* n) 1
-- Reinhard Zumkeller, Nov 22 2014
-
[1+2*n+3*n^2+4*n^3+5*n^4+6*n^5+7*n^6+8*n^7+9*n^8: n in [0..20]]; // Vincenzo Librandi, Nov 09 2014
-
CoefficientList[Series[(5 x^8 + 1548 x^7 + 31360 x^6 + 129620 x^5 + 148266 x^4 + 48316 x^3 + 3728 x^2 + 36 x + 1) / (1 - x)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 09 2014 *)
With[{c=Total[Table[k n^(k-1),{k,9}]]},Table[c,{n,0,30}]] (* or *) LinearRecurrence[ {9,-36,84,-126,126,-84,36,-9,1},{1,45,4097,83653,757305,4272461,17736745,59409477,169826513},30] (* Harvey P. Dale, Jul 18 2017 *)
-
vector(100,n,1 + 2*(n-1)+ 3*(n-1)^2 + 4*(n-1)^3 + 5*(n-1)^4 + 6*(n-1)^5 + 7*(n-1)^6 + 8*(n-1)^7 + 9*(n-1)^8) \\ Derek Orr, Nov 09 2014
-
A113630_list, m = [1], [362880, -1229760, 1607760, -1011480, 309816, -40752, 1584, -4, 1]
for _ in range(10**3):
for i in range(8):
m[i+1]+= m[i]
A113630_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
A123076
Numbers k such that p = 1 + 2k + 3k^2 + 4k^3 is prime.
Original entry on oeis.org
4, 12, 14, 18, 22, 24, 28, 34, 52, 62, 64, 78, 94, 104, 110, 118, 122, 132, 140, 144, 154, 158, 160, 178, 194, 204, 214, 218, 220, 234, 258, 262, 270, 272, 290, 294, 312, 314, 322, 344, 368, 370, 372, 382, 388, 424, 430, 440, 442, 454, 482, 494, 498, 518, 542
Offset: 1
For k=4, 1 + 2k + 3k^2 + 4k^3 = 313 which is prime.
-
Select[Range[542],PrimeQ[1+2#+3#^2+4#^3]&] (* James C. McMahon, Nov 15 2024 *)
-
lista(m) = {for (n=1, m, if (isprime(1 + 2*n + 3*n^2 + 4*n^3), print1(n, ", ")););} \\ Michel Marcus, Apr 19 2013
A131464
a(n) = 4*n^3 - 3*n^2 + 2*n - 1.
Original entry on oeis.org
2, 23, 86, 215, 434, 767, 1238, 1871, 2690, 3719, 4982, 6503, 8306, 10415, 12854, 15647, 18818, 22391, 26390, 30839, 35762, 41183, 47126, 53615, 60674, 68327, 76598, 85511, 95090, 105359, 116342, 128063, 140546, 153815, 167894, 182807, 198578, 215231, 232790
Offset: 1
-
[4*n^3-3*n^2+2*n-1: n in [1..40]]; // Vincenzo Librandi, Feb 12 2013
-
I:=[2, 23, 86, 215]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 12 2013
-
CoefficientList[Series[(2 + 15 x + 6 x^2 + x^3)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2013 *)
Table[4n^3-3n^2+2n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{2,23,86,215},40] (* Harvey P. Dale, May 05 2018 *)
A113531
a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5.
Original entry on oeis.org
1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, 390277, 654321, 1045221, 1604041, 2379885, 3430617, 4823581, 6636321, 8957301, 11886625, 15536757, 20033241, 25515421, 32137161, 40067565, 49491697, 60611301, 73645521
Offset: 0
-
With[{eq=Total[# n^(#-1)&/@Range[6]]},Table[eq,{n,0,30}]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,21,321,2005,7737,22461},30] (* Harvey P. Dale, Nov 02 2011 *)
-
for(n=0,50, print1(1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5, ", ")) \\ G. C. Greubel, Mar 15 2017
A113532
a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6.
Original entry on oeis.org
1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, 4110364, 7654321, 13446148, 22505929, 36167548, 56137369, 84557956, 124076833, 177920284, 249972193, 344857924, 468033241, 625878268, 825796489, 1076318788
Offset: 0
-
Table[1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6, {n,0,50}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 28, 769, 7108, 36409, 131836, 380713}, 50] (* G. C. Greubel, Mar 15 2017 *)
-
for(n=0,50, print1(1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6, ", ")) \\ G. C. Greubel, Mar 15 2017
A123077
Primes of the form (1+2n+3n^2+4n^3)/2.
Original entry on oeis.org
5, 71, 293, 7103, 32213, 40487, 50069, 87623, 161831, 211007, 238949, 337343, 852263, 922037, 1328447, 1421909, 1955399, 2607989, 3061703, 3744551, 4121087, 4318469, 4731941, 5400359, 5879231, 7198421, 9356927, 10400501, 10764863
Offset: 1
-
[a: n in [0..250] | IsPrime(a) where a is (1 + 2*n + 3*n^2 + 4*n^3) div 2]; // Vincenzo Librandi, Mar 21 2013
-
Select[Table[(1 + 2 n + 3 n^2 + 4 n^3)/2, {n, 0, 200}], PrimeQ] (* Vincenzo Librandi, Mar 21 2013 *)
A123100
Primes of the form (1+2n+3n^2+4n^3)/5.
Original entry on oeis.org
2, 197, 354677, 713357, 959597, 1256837, 3676037, 5168717, 7018997, 11945957, 15099437, 18764117, 25303637, 36170597, 42610877, 46099517, 49773557, 71092757, 75979997, 91974917, 110070437, 123365117, 161190317, 306442277
Offset: 1
-
Select[Table[(1 + 2 n + 3 n^2 + 4 n^3)/5, {n, 0, 200}], PrimeQ] (* Vincenzo Librandi, Mar 21 2013 *)
Showing 1-10 of 14 results.
Comments