cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A249951 Numbers n such that A113630(n) is prime.

Original entry on oeis.org

3, 5, 8, 23, 42, 62, 63, 75, 90, 98, 177, 192, 207, 213, 222, 228, 233, 263, 288, 297, 317, 320, 402, 453, 455, 528, 570, 602, 620, 650, 672, 752, 780, 797, 810, 863, 867, 870, 875, 912, 932, 935, 978, 1010, 1043, 1065, 1067, 1070, 1110, 1125, 1133, 1142, 1190
Offset: 1

Views

Author

Chai Wah Wu, Nov 09 2014

Keywords

Comments

A113630(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8.

Examples

			See example section of A113630.
		

Crossrefs

Cf. A113630.
Cf. A010051.

Programs

  • Haskell
    a249951 n = a249951_list !! (n-1)
    a249951_list = filter ((== 1) . a010051'' . a113630) [1..]
    -- Reinhard Zumkeller, Nov 22 2014
  • Magma
    [n: n in [0..1500] | IsPrime(1+2*n+3*n^2+4*n^3+ 5*n^4+6*n^5+7*n^6+8*n^7+9*n^8)]; // Vincenzo Librandi, Nov 09 2014
    
  • PARI
    for(n=1,5000,s=sum(i=1,9,i*n^(i-1));if(ispseudoprime(s),print1(n,", "))) \\ Derek Orr, Nov 09 2014
    
  • Python
    from sympy import isprime
    A249951_list, m = [], [362880, -1229760, 1607760, -1011480, 309816, -40752, 1584, -4, 1]
    for n in range(1,10**5+1):
        for i in range(8):
            m[i+1]+= m[i]
        if isprime(m[-1]):
            A249951_list.append(n)
    

A096209 Primes of the form 10 followed by 9's only.

Original entry on oeis.org

109, 10999999999, 1099999999999, 1099999999999999999, 109999999999999999999999, 1099999999999999999999999999999, 10999999999999999999999999999999999999
Offset: 1

Views

Author

Cino Hilliard, Jul 28 2004

Keywords

Comments

Or, primes of the form 10^k + 10^(k-1) - 1.
Number of 9's in a(n) is given by A111391(n). - Daniel Starodubtsev, Jan 06 2020

Crossrefs

Programs

  • Mathematica
    t = {}; Do[m = n; p = 10^(n + 1) + (10^n - 1); If[PrimeQ[p], AppendTo[t, p]], {n, 165}]; t (* Robert G. Wilson v *)
  • PARI
    f(n) = for(x=1,n,y=10^x+10^(x-1)-1;if(ispseudoprime(y),print1(y", ")))

Formula

a(n) = 11*10^A111391(n) - 1 = A198700(A111391(n)). - Elmo R. Oliveira, Jun 14 2025

Extensions

Entry revised by N. J. A. Sloane, Apr 01 2006

A113629 Primes of the form 10 followed by a string of 3's.

Original entry on oeis.org

103, 1033, 10333, 103333, 10333333, 103333333, 1033333333, 10333333333333, 10333333333333333333, 10333333333333333333333333333333, 10333333333333333333333333333333333333333333333333333333333333333333333333333
Offset: 1

Views

Author

Amarnath Murthy, Nov 10 2005

Keywords

Crossrefs

Extensions

More terms from Jim Nastos, Nov 15 2005
Showing 1-3 of 3 results.