cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A123076 Numbers k such that p = 1 + 2k + 3k^2 + 4k^3 is prime.

Original entry on oeis.org

4, 12, 14, 18, 22, 24, 28, 34, 52, 62, 64, 78, 94, 104, 110, 118, 122, 132, 140, 144, 154, 158, 160, 178, 194, 204, 214, 218, 220, 234, 258, 262, 270, 272, 290, 294, 312, 314, 322, 344, 368, 370, 372, 382, 388, 424, 430, 440, 442, 454, 482, 494, 498, 518, 542
Offset: 1

Views

Author

Zak Seidov, Sep 27 2006

Keywords

Comments

Corresponding p's are in A123059.

Examples

			For k=4, 1 + 2k + 3k^2 + 4k^3 = 313 which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[542],PrimeQ[1+2#+3#^2+4#^3]&] (* James C. McMahon, Nov 15 2024 *)
  • PARI
    lista(m) = {for (n=1, m, if (isprime(1 + 2*n + 3*n^2 + 4*n^3), print1(n, ", ")););} \\ Michel Marcus, Apr 19 2013

A123077 Primes of the form (1+2n+3n^2+4n^3)/2.

Original entry on oeis.org

5, 71, 293, 7103, 32213, 40487, 50069, 87623, 161831, 211007, 238949, 337343, 852263, 922037, 1328447, 1421909, 1955399, 2607989, 3061703, 3744551, 4121087, 4318469, 4731941, 5400359, 5879231, 7198421, 9356927, 10400501, 10764863
Offset: 1

Views

Author

Zak Seidov, Sep 27 2006

Keywords

Comments

Corresponding n's are 1, 3, 5, 15, 25, 27, 29, 35, 43, 47, 49, 55, 75, 77, 87, 89, 99, 109, 115, 123, 127, 129, 133, 139, 143, 153, 167, 173, 175, 179, 183, 185, 195, 199, 207, 209, 227, 229, 239, 245, 257, 259, 269, 273, 283, 285, 299, 309, 315, 325, 327, 337, 347, 349, 357, 363, 369, 377, 379, 393, 399, 403, 409, 417, 425, 439, 523, 539, 545, 559, 567, 575, 587, 589, 593, 607, 623, 659, 687, 697, 699.
There are no primes of the form (1+2n+3n^2+4n^3)/3.

Crossrefs

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is  (1 + 2*n + 3*n^2 + 4*n^3) div 2]; // Vincenzo Librandi, Mar 21 2013
  • Mathematica
    Select[Table[(1 + 2 n + 3 n^2 + 4 n^3)/2, {n, 0, 200}], PrimeQ] (* Vincenzo Librandi, Mar 21 2013 *)

A123100 Primes of the form (1+2n+3n^2+4n^3)/5.

Original entry on oeis.org

2, 197, 354677, 713357, 959597, 1256837, 3676037, 5168717, 7018997, 11945957, 15099437, 18764117, 25303637, 36170597, 42610877, 46099517, 49773557, 71092757, 75979997, 91974917, 110070437, 123365117, 161190317, 306442277
Offset: 1

Views

Author

Zak Seidov, Sep 27 2006

Keywords

Comments

All terms > 2 are congruent to 7 (mod 10).
Corresponding n's are: 1, 6, 76, 96, 106, 116, 166, 186, 206, 246, 266, 286, 316, 356, 376, 386, 396, 446, 456, 486, 516, 536, 586, 726, 736, 746, 766, 796, 846, 866, 906, 916, 1036, 1046, 1076, 1116, 1126, 1156, 1176, 1236, 1296, 1316, 1326, 1406, 1456, 1546, 1586, 1596, 1686, 1706, 1786, 1816, 1896, 1926, 1956, all are congruent to 1 (mod 5).

Crossrefs

Programs

  • Mathematica
    Select[Table[(1 + 2 n + 3 n^2 + 4 n^3)/5, {n, 0, 200}], PrimeQ] (* Vincenzo Librandi, Mar 21 2013 *)
Showing 1-3 of 3 results.