A056578
a(n) = 1 + 2*n + 3*n^2 + 4*n^3.
Original entry on oeis.org
1, 10, 49, 142, 313, 586, 985, 1534, 2257, 3178, 4321, 5710, 7369, 9322, 11593, 14206, 17185, 20554, 24337, 28558, 33241, 38410, 44089, 50302, 57073, 64426, 72385, 80974, 90217, 100138, 110761, 122110, 134209, 147082, 160753, 175246, 190585, 206794, 223897, 241918
Offset: 0
For n>4 this is 4321 translated from base n to base 10.
Note: 1 + 2*x + 3*x^2 + 4*x^3 is the first derivative of 1 + x + x^2 + x^3 + x^4, i.e.,
A053699.
A059045
Square array T(n,k) read by antidiagonals where T(0,k) = 0 and T(n,k) = 1 + 2k + 3k^2 + ... + n*k^(n-1).
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 49, 34, 9, 1, 0, 1, 21, 129, 142, 57, 11, 1, 0, 1, 28, 321, 547, 313, 86, 13, 1, 0, 1, 36, 769, 2005, 1593, 586, 121, 15, 1, 0, 1, 45, 1793, 7108, 7737, 3711, 985, 162, 17, 1, 0, 1, 55, 4097, 24604, 36409
Offset: 0
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 6, 17, 34, 57, 86, 121, 162, 209, ...
1, 10, 49, 142, 313, 586, 985, 1534, 2257, ...
1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, ...
1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, ...
1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, ...
A113630
1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8.
Original entry on oeis.org
1, 45, 4097, 83653, 757305, 4272461, 17736745, 59409477, 169826513, 429794605, 987654321, 2098573445, 4178995657, 7879732173, 14181546905, 24517448581, 40926266145, 66242446637, 104327377633, 160347899205, 241108033241
Offset: 0
a(3) = 1 + 2*3 + 3*3^2 + 4*3^3 + 5*3^4 + 6*3^5 + 7*3^6 + 8*3^7 + 9*3^8 = 83653 is prime.
a(5) = 1 + 2*5 + 3*5^2 + 4*5^3 + 5*5^4 + 6*5^5 + 7*5^6 + 8*5^7 + 9*5^8 = 4272461 is prime.
a(8) = 1 + 2*8 + 3*8^2 + 4*8^3 + 5*8^4 + 6*8^5 + 7*8^6 + 8*8^7 + 9*8^8 = 169826513 is prime.
a(23) = 1 + 2*23 + 3*23^2 + 4*23^3 + 5*23^4 + 6*23^5 + 7*23^6 + 8*23^7 + 9*23^8 = 733113789893 is prime.
- Chai Wah Wu, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
a113630 n = sum $ zipWith (*) [1..9] $ iterate (* n) 1
-- Reinhard Zumkeller, Nov 22 2014
-
[1+2*n+3*n^2+4*n^3+5*n^4+6*n^5+7*n^6+8*n^7+9*n^8: n in [0..20]]; // Vincenzo Librandi, Nov 09 2014
-
CoefficientList[Series[(5 x^8 + 1548 x^7 + 31360 x^6 + 129620 x^5 + 148266 x^4 + 48316 x^3 + 3728 x^2 + 36 x + 1) / (1 - x)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 09 2014 *)
With[{c=Total[Table[k n^(k-1),{k,9}]]},Table[c,{n,0,30}]] (* or *) LinearRecurrence[ {9,-36,84,-126,126,-84,36,-9,1},{1,45,4097,83653,757305,4272461,17736745,59409477,169826513},30] (* Harvey P. Dale, Jul 18 2017 *)
-
vector(100,n,1 + 2*(n-1)+ 3*(n-1)^2 + 4*(n-1)^3 + 5*(n-1)^4 + 6*(n-1)^5 + 7*(n-1)^6 + 8*(n-1)^7 + 9*(n-1)^8) \\ Derek Orr, Nov 09 2014
-
A113630_list, m = [1], [362880, -1229760, 1607760, -1011480, 309816, -40752, 1584, -4, 1]
for _ in range(10**3):
for i in range(8):
m[i+1]+= m[i]
A113630_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
A113531
a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5.
Original entry on oeis.org
1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, 390277, 654321, 1045221, 1604041, 2379885, 3430617, 4823581, 6636321, 8957301, 11886625, 15536757, 20033241, 25515421, 32137161, 40067565, 49491697, 60611301, 73645521
Offset: 0
-
With[{eq=Total[# n^(#-1)&/@Range[6]]},Table[eq,{n,0,30}]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,21,321,2005,7737,22461},30] (* Harvey P. Dale, Nov 02 2011 *)
-
for(n=0,50, print1(1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5, ", ")) \\ G. C. Greubel, Mar 15 2017
A113532
a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6.
Original entry on oeis.org
1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, 4110364, 7654321, 13446148, 22505929, 36167548, 56137369, 84557956, 124076833, 177920284, 249972193, 344857924, 468033241, 625878268, 825796489, 1076318788
Offset: 0
-
Table[1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6, {n,0,50}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 28, 769, 7108, 36409, 131836, 380713}, 50] (* G. C. Greubel, Mar 15 2017 *)
-
for(n=0,50, print1(1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6, ", ")) \\ G. C. Greubel, Mar 15 2017
A123099
Primes of the form 1 + 2*k + 3*k^2 + 4*k^3 + 5*k^4.
Original entry on oeis.org
547, 35983, 111049, 2738179, 6076687, 15860209, 53530639, 685318537, 1043755441, 1670649571, 2347515619, 9761226721, 10330521727, 12188475769, 15042514033, 25486958659, 30383211043, 40608270601, 45701408383
Offset: 1
-
[ a: n in [0..400] | IsPrime(a) where a is 1+2*n+3*n^2+4*n^3+5*n^4]; // Vincenzo Librandi, Nov 13 2010
-
Select[Table[1+2n+3n^2+4n^3+5n^4,{n,500}],PrimeQ] (* Harvey P. Dale, Oct 29 2022 *)
A131466
a(n) = 5n^4 - 4n^3 + 3n^2 - 2n + 1.
Original entry on oeis.org
1, 3, 57, 319, 1065, 2691, 5713, 10767, 18609, 30115, 46281, 68223, 97177, 134499, 181665, 240271, 312033, 398787, 502489, 625215, 769161, 936643, 1130097, 1352079, 1605265, 1892451, 2216553, 2580607, 2987769, 3441315
Offset: 0
-
Table[5n^4-4n^3+3n^2-2n+1,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,3,57,319,1065},30] (* Harvey P. Dale, Nov 01 2020 *)
-
a(n)=5*n^4-4*n^3+3*n^2-2*n+1 \\ Charles R Greathouse IV, Oct 21 2022
A113618
a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7.
Original entry on oeis.org
1, 36, 1793, 24604, 167481, 756836, 2620201, 7526268, 18831569, 42374116, 87654321, 169343516, 309160393, 538155684, 899445401, 1451432956, 2271560481, 3460629668, 5147732449, 7495831836, 10708033241, 15034586596, 20780659593
Offset: 0
1 + 2*8 + 3*8^2 + 4*8^3 + 5*8^4 + 6*8^5 + 7*8^6 + 8*8^7 = 18831569 = 173 * 199 * 547.
1 + 2*26 + 3*26^2 + 4*26^3 + 5*26^4 + 6*26^5 + 7*26^6 + 8*26^7 = 66490537361 is prime, the smallest prime in the sequence.
-
[1+2*n+3*n^2+4*n^3+5*n^4+6*n^5+7*n^6+8*n^7: n in [1..43]] // Vincenzo Librandi, Dec 21 2010
-
Join[{1},Table[Total[Table[p*n^(p-1),{p,8}]],{n,30}]] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,36,1793,24604,167481,756836,2620201,7526268},30] (* Harvey P. Dale, Jul 16 2014 *)
A113632
a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6 + 8*n^7 + 9*n^8 + 10*n^9.
Original entry on oeis.org
1, 55, 9217, 280483, 3378745, 23803711, 118513705, 462945547, 1512003793, 4303999495, 10987654321, 25678050355, 55776799177, 113924725903, 220792014745, 408951042331, 728121033505, 1252121211607, 2087920281313
Offset: 0
a(5) = 1 + 2*5 + 3*5^2 + 4*5^3 + 5*5^4 + 6*5^5 + 7*5^6 + 8*5^7 + 9*5^8 + 10*5^9 = 23803711 is prime.
a(30) = 1 + 2*30 + 3*30^2 + 4*30^3 + 5*30^4 + 6*30^5 + 7*30^6 + 8*30^7 + 9*30^8 + 10*30^9 = 202915112960761 is prime.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
With[{eq=Total[Range[10](n^Range[0,9])]},Table[eq,{n,0,20}]] (* Harvey P. Dale, Mar 14 2011 *)
Showing 1-9 of 9 results.
Comments