A056619 Smallest prime with primitive root n, or 0 if no such prime exists.
2, 3, 2, 0, 2, 11, 2, 3, 2, 7, 2, 5, 2, 3, 2, 0, 2, 5, 2, 3, 2, 5, 2, 7, 2, 3, 2, 5, 2, 11, 2, 3, 2, 19, 2, 0, 2, 3, 2, 7, 2, 5, 2, 3, 2, 11, 2, 5, 2, 3, 2, 5, 2, 7, 2, 3, 2, 5, 2, 19, 2, 3, 2, 0, 2, 7, 2, 3, 2, 19, 2, 5, 2, 3, 2, 13, 2, 5, 2, 3, 2, 5, 2, 11, 2, 3, 2, 5, 2, 11, 2, 3, 2, 7, 2, 7, 2, 3, 2
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local p; if n::odd then return 2 elif issqr(n) then return 0 fi; p:= 3; do if numtheory:-order(n,p) = p-1 then return p fi; p:= nextprime(p); od end proc: map(f, [$1..100]); # Robert Israel, Feb 21 2017
-
Mathematica
a[n_] := Module[{p}, If[OddQ[n], Return[2], If[IntegerQ[Sqrt[n]], Return[0], p = 3; While[True, If[MultiplicativeOrder[n, p] == p-1, Return[p]]; p = NextPrime[p]]]]]; Array[a, 100] (* Jean-François Alcover, Apr 10 2019, after Robert Israel *)
-
PARI
A056619(n)=forprime(p=2,n*2,gcd(n,p)==1&&znorder(Mod(n,p))==p-1&&return(p)) \\ or, more efficient: A056619(n)=if(bittest(n,0),2,!issquare(n)&&forprime(p=3,n*2,gcd(n,p)==1&&znorder(Mod(n,p))==p-1&&return(p))) \\ M. F. Hasler, Feb 21 2017
Formula
a(n) = 0 only for perfect squares, A000290.
a(n) = 2 for all odd n. a(n) = 0 for even squares. a(n) = 3 for n = 2 (mod 6). a(n) = 5 for n in {12, 18, 22, 28} (mod 30). - M. F. Hasler, Feb 21 2017
Extensions
Corrected and extended by Jud McCranie, Mar 21 2002
Corrected by Robert Israel, Feb 21 2017
Comments