A056622 a(n) = A000188(n)/A055229(n).
1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 7, 3, 10, 1, 1, 1, 1
Offset: 1
Examples
For n = 125: A000188(125) = 5, A055229(125) = 5, so a(125) = 1. For n = 360: A000188(360) = 6, A055229(360) = 2, so a(360) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
Programs
-
Mathematica
f[p_, e_] := If[EvenQ[e], p^(e/2), If[e == 1, 1, p^((e - 3)/2)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
-
PARI
A000188(n) = core(n, 1)[2]; \\ Michel Marcus, Feb 27 2013 A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ Charles R Greathouse IV, Nov 20 2012 A056622(n) = (A000188(n)/A055229(n)); \\ Antti Karttunen, Nov 19 2017
Formula
Multiplicative with a(p^e) = p^(e/2) if e even, a(p) = 1, and a(p^e) = p^((e-3)/2) for odd e > 1. - Amiram Eldar, Sep 14 2020
Dirichlet g.f.: zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-1) + 1/p^(3*s)). - Amiram Eldar, Dec 18 2023
a(n) = sqrt(A056623(n)). - Amiram Eldar, Jul 26 2024
From Vaclav Kotesovec, Jan 27 2025: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 1/p^(3*s-1) - 1/p^(4*s) + 1/p^(4*s-1)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 1/p^(3*s-1) - 1/p^(4*s) + 1/p^(4*s-1)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4) = 0.490798286634728225909154323920711804307234495196201399106047774...,
f'(1) = f(1) * Sum_{p prime} (5*p^2 - 7*p + 4) * log(p) / (p^4 - 2*p^2 + 2*p - 1) = f(1) * 1.94788222046256567576552118452630646598176999674201755783...
and gamma is the Euler-Mascheroni constant A001620. (End)
Extensions
Name replaced with a formula by Amiram Eldar, Jul 26 2024
Comments