cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056622 a(n) = A000188(n)/A055229(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 7, 3, 10, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name: "Square root of largest unitary square divisor of n." The previous name was incorrect for numbers that have an odd exponent in their prime factorization that is larger than 3. For the correct square root of largest unitary square divisor of n see A071974. - Amiram Eldar, Jul 26 2024
Multiplicative because quotient of two multiplicative sequences. - Christian G. Bower, May 16 2005

Examples

			For n = 125: A000188(125) = 5, A055229(125) = 5, so a(125) = 1.
For n = 360: A000188(360) = 6, A055229(360) = 2, so a(360) = 3.
		

Crossrefs

Programs

Formula

Multiplicative with a(p^e) = p^(e/2) if e even, a(p) = 1, and a(p^e) = p^((e-3)/2) for odd e > 1. - Amiram Eldar, Sep 14 2020
Dirichlet g.f.: zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-1) + 1/p^(3*s)). - Amiram Eldar, Dec 18 2023
a(n) = sqrt(A056623(n)). - Amiram Eldar, Jul 26 2024
From Vaclav Kotesovec, Jan 27 2025: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 1/p^(3*s-1) - 1/p^(4*s) + 1/p^(4*s-1)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 1/p^(3*s-1) - 1/p^(4*s) + 1/p^(4*s-1)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4) = 0.490798286634728225909154323920711804307234495196201399106047774...,
f'(1) = f(1) * Sum_{p prime} (5*p^2 - 7*p + 4) * log(p) / (p^4 - 2*p^2 + 2*p - 1) = f(1) * 1.94788222046256567576552118452630646598176999674201755783...
and gamma is the Euler-Mascheroni constant A001620. (End)

Extensions

Name replaced with a formula by Amiram Eldar, Jul 26 2024