cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056626 Number of non-unitary square divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Examples

			n = p^u prime power has u+1 square divisors of which 2 (i.e., 1 and n) are unitary but u-1 are not unitary, so a(p^u) = u - 1. E.g., n = 4^4 = 256, has 5 square divisors {1, 4, 16, 64, 256} of which {4, 16, 64} are not unitary, so a(256)=3.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, ! CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n])- Times @@ f2 @@@ fct; Array[a, 100] (* Amiram Eldar, Sep 26 2022 *)
  • PARI
    a(n) = {my(f = factor(n), r=0, m = 0); prod(i=1,#f~,f[i,2]>>1 + 1) - 2^(omega(f) - omega(core(f)))} \\ David A. Corneth, Jul 28 2017
    
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)!=1, issquare(d))); \\ Michel Marcus, Jul 29 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A056626(n):
        f = factorint(n).values()
        return prod((e>>1)+1 for e in f)-(1<Chai Wah Wu, Aug 04 2024

Formula

a(n) = A046951(n) - 2^r(n), where r(n) is the number of distinct prime factors of the largest unitary square divisor of n. [Corrected by Amiram Eldar, Aug 03 2024]
a(n) = A046951(n) - 2^(A162641(n)). - David A. Corneth, Jul 28 2017
From Amiram Eldar, Sep 26 2022: (Start)
a(n) = A046951(n) - A056624(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)*(1 - 1/zeta(3)) = 0.27650128922802056073... . (End)

Extensions

a(32) and a(96) corrected by Michael De Vlieger, Jul 29 2017