A056674 Number of squarefree divisors which are not unitary. Also number of unitary divisors which are not squarefree.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 2, 1, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 2, 0, 0, 0, 2, 0, 2, 2, 3, 0, 0, 0, 2, 0
Offset: 1
Examples
For n = 252, it has 18 divisors, 8 are unitary, 8 are squarefree, 2 belong to both classes, so 6 are squarefree but not unitary, thus a(252) = 6. The set {2,3,14,21,42} forms squarefree but non-unitary while the set {4,9,36,28,63,252} of same size gives the set of not squarefree but unitary divisors.
Links
Programs
-
Mathematica
Table[DivisorSum[n, 1 &, And[SquareFreeQ@ #, ! CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *) f[p_, e_] := If[e == 1, 2, 1]; a[1] = 0; a[n_] := 2^Length[fct = FactorInteger[n]] - Times @@ (f @@@ fct); Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
-
PARI
A034444(n) = (2^omega(n)); A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ Charles R Greathouse IV, Aug 13 2013 A055231(n) = n/A057521(n); A056674(n) = (A034444(n) - numdiv(A055231(n))); \\ Or: A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ Charles R Greathouse IV, Nov 20 2012 A056674(n) = ((2^omega(n)) - numdiv(core(n)/A055229(n))); \\ Antti Karttunen, Jul 19 2017
-
PARI
a(n) = {my(f = factor(n), e = f[,2]); 2^omega(f) - prod(i = 1, #e, if(e[i] == 1, 2, 1));} \\ Amiram Eldar, Jul 24 2024
-
Python
from sympy import gcd, primefactors, divisor_count from sympy.ntheory.factor_ import core def a055229(n): c=core(n) return gcd(c, n//c) def a056674(n): return 2**len(primefactors(n)) - divisor_count(core(n)//a055229(n)) print([a056674(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017
Comments