cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056674 Number of squarefree divisors which are not unitary. Also number of unitary divisors which are not squarefree.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 2, 1, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 2, 0, 0, 0, 2, 0, 2, 2, 3, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Comments

Numbers of unitary and of squarefree divisors are identical, although the 2 sets are usually different, so sizes of parts outside overlap are also equal to each other.

Examples

			For n = 252, it has 18 divisors, 8 are unitary, 8 are squarefree, 2 belong to both classes, so 6 are squarefree but not unitary, thus a(252) = 6. The set {2,3,14,21,42} forms squarefree but non-unitary while the set {4,9,36,28,63,252} of same size gives the set of not squarefree but unitary divisors.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[SquareFreeQ@ #, ! CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *)
    f[p_, e_] := If[e == 1, 2, 1]; a[1] = 0; a[n_] := 2^Length[fct = FactorInteger[n]] - Times @@ (f @@@ fct); Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    A034444(n) = (2^omega(n));
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ Charles R Greathouse IV, Aug 13 2013
    A055231(n) = n/A057521(n);
    A056674(n) = (A034444(n) - numdiv(A055231(n)));
    \\ Or:
    A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ Charles R Greathouse IV, Nov 20 2012
    A056674(n) = ((2^omega(n)) - numdiv(core(n)/A055229(n)));
    \\ Antti Karttunen, Jul 19 2017
    
  • PARI
    a(n) = {my(f = factor(n), e = f[,2]); 2^omega(f) - prod(i = 1, #e, if(e[i] == 1, 2, 1));} \\ Amiram Eldar, Jul 24 2024
    
  • Python
    from sympy import gcd, primefactors, divisor_count
    from sympy.ntheory.factor_ import core
    def a055229(n):
        c=core(n)
        return gcd(c, n//c)
    def a056674(n): return 2**len(primefactors(n)) - divisor_count(core(n)//a055229(n))
    print([a056674(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017

Formula

a(n) = A034444(n) - A056671(n) = A034444(n) - A000005(A055231(n)) = A034444(n) - A000005(A007913(n)/A055229(n)).