cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056699 First differences are 2,1,-2,3 (repeated).

Original entry on oeis.org

1, 3, 4, 2, 5, 7, 8, 6, 9, 11, 12, 10, 13, 15, 16, 14, 17, 19, 20, 18, 21, 23, 24, 22, 25, 27, 28, 26, 29, 31, 32, 30, 33, 35, 36, 34, 37, 39, 40, 38, 41, 43, 44, 42, 45, 47, 48, 46, 49, 51, 52, 50, 53, 55, 56, 54, 57, 59, 60, 58, 61, 63, 64, 62, 65, 67, 68, 66
Offset: 1

Views

Author

Michael Knauth (knauth_jur(AT)yahoo.de), Nov 21 2003

Keywords

Comments

Second quadrisection of natural numbers shifted right two places. - Ralf Stephan, Jun 10 2005
A permutation of the natural numbers partitioned into quadruples [4k-3,4k-1,4k,4k-2] for k > 0. Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the second and third elements, then swap the third and fourth elements; repeat for all quadruples. - Guenther Schrack, Oct 18 2017

Crossrefs

Inverse: A284307.
Sequence of fixed points: A016813(n-1) for n > 0.
Odd elements: A005408(n-1) for n > 0.
Indices of odd elements: A042963(n) for n > 0.
Even elements: 2*A103889(n) for n > 0.
Indices of even elements: A014601(n) for n > 0.

Programs

  • MATLAB
    a = [1 3 4 2];
    max = 10000;  % Generation of a b-file
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    % Guenther Schrack, Oct 18 2017
    
  • Magma
    [Floor((n - ((-1)^n + (-1)^(n*(n-1)/2)*(2+(-1)^n)) / 2)): n in [1..100]]; // Vincenzo Librandi, Feb 05 2018
  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,3,4,2,5},70] (* Harvey P. Dale, May 10 2014 *)
    Table[Floor[(n - ((-1)^n + (-1)^(n (n - 1) / 2) (2 + (-1)^n)) / 2)], {n, 100}] (* Vincenzo Librandi, Feb 05 2018 *)
  • PARI
    for(n=1, 10000, print1(n - ((-1)^n + (-1)^(n*(n-1)/2)*(2+(-1)^n))/2, ", ")) \\ Guenther Schrack, Oct 18 2017
    

Formula

G.f.: x*(2*x^4 - 2*x^3 + x^2 + 2*x + 1)/((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Nov 08 2012
From Guenther Schrack, Oct 18 2017: (Start)
a(n) = a(n-4) + 4 for n > 4.
a(n) = n + periodic[0,1,1,-2].
a(n) = A092486(A067060(n) - 1) for n > 0.
a(n) = A292576(n) - 2*((-1)^floor(n/2)) for n > 0.
a(A116966(n-1)) = A263449(n-1) for n > 0.
A263449(a(n) - 1) = A116966(n-1) for n > 0.
a(n+2) - a(n) = (-1)^floor(n^2/4)*A132400(n+1) for n > 0.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5. (End)
a(n) = A298364(n-1) + 1 for n > 1. - Guenther Schrack, Feb 04 2018