A056744 a(n) is the smallest number which when written in binary contains as substrings the binary expansions of 1..n.
1, 2, 6, 12, 44, 44, 92, 184, 1208, 1256, 4792, 4792, 9912, 9912, 19832, 39664, 563952, 576464, 4496112, 4499184, 17996528, 17997488, 143972080, 143972080, 145057520, 145070832, 294967024, 294967024, 589944560, 589944560, 1179889136, 2359778272, 71079255008
Offset: 1
Examples
a(6)=44 because 101100 (44 in base 2) is the smallest number that contains 1, 10, 11, 100, 101 and 110 (1 through 6 in base 2). Terms begin as follows (see Links for a longer table): . a(n) ========================= n decimal binary -- ------- ---------------- 1 1 1 2 2 10 3 6 110 4 12 1100 5 44 101100 6 44 101100 7 92 1011100 8 184 10111000 9 1208 10010111000 10 1256 10011101000 11 4792 1001010111000 12 4792 1001010111000 13 9912 10011010111000 14 9912 10011010111000 15 19832 100110101111000 16 39664 1001101011110000
Links
- Davis Smith, Table of n, a(n) for n = 1..64
- David A. Corneth, substrings of a(33) and a(36) listed.
- Jon E. Schoenfield, Conjecture on the number of 1's in the binary expansion of a(n).
- Jon E. Schoenfield, Lower bounds on the numbers of 1-bits and 0-bits in a(n), a tabular method for deducing the order in which substrings occur in the binary expansion of a(n), and an approach for accounting for duplicate substrings when a(n) has more than ceiling(n/2) 1-bits, illustrated with a proof of the exact value of a(49).
- Jon E. Schoenfield, Values for n = 1..64 in binary and decimal.
- Davis Smith, Proof that A056744(n) == 2^floor(log_2(n)) (mod 2^(floor(log_2(n))+1)).
Crossrefs
Programs
-
PARI
A056744_vec(n)={ my( L=List([1]),x=L[#L],Z=n+#L,B=binary(x), A=setbinop((y,z)->fromdigits(B[y..z],2),[1..#B]) ); while(#L
fromdigits(B[y..z],2),[1..#B]));listput(L,x));Vec(L) } \\ Davis Smith, May 09 2021
Formula
A144016(a(n)) >= n. - Rémy Sigrist, May 11 2021
Extensions
More terms from Naohiro Nomoto, Jul 20 2001
a(25)-a(31) from Ray Chandler, Nov 06 2008
a(32) from Davis Smith, May 10 2021
a(33) from Jon E. Schoenfield, May 11 2021
Comments