A056753 Only odd numbers occur and for all k there are k numbers between any two successive occurrences of k.
1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3, 1, 13, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 17, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 19, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 21, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 23, 1, 3, 1, 7, 1, 3, 1
Offset: 0
Links
- R. Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
import Data.List (intercalate, group) a056753 n = a056753_list !! n a056753_list = [1] ++ odds [] where odds xs = xs ++ (intercalate xs' $ group [y+2,y+4..2*y+1]) ++ odds xs' where y = 2 * length xs + 1 xs' = xs ++ [y] ++ xs -- Reinhard Zumkeller, Feb 25 2012, Oct 24 2010
-
Magma
S:=[ 0: n in [1..100] ]; k:=1; p:=Position(S, 0, 1); while p gt 0 do for j in [p..#S by k+1] do if S[j] eq 0 then S[j]:=k; else break; end if; end for; f:=p; p:=Position(S, 0, f); k+:=2; end while; S; // Klaus Brockhaus, Oct 25 2010
-
Mathematica
a[n_] := a[n] = (ClearAll[f]; f[i_, x_, y_, z_] := f[i, x, y, z] = If[i == n, If[x == 1, a[n-z] + 2, a[n-z]], If[x == 1, If[y == 1, f[i+1, 2z, z, 2z], f[i+1, z, y-1, z]], f[i+1, x-1, y, z]]]; If[n == 0, 1, f[1, 1, 1, 1]]); Table[a[n], {n, 0, 98}] (* Jean-François Alcover, Dec 14 2011, after Reinhard Zumkeller *)
Formula
Let x = a(n - A164632(n)), a(n) = if (x occurred exactly once so far) then x+2 else x. - Reinhard Zumkeller, Aug 23 2009
Comments