cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056778 Number of 3-element antichains on an unlabeled n-element set; equivalence classes of monotone Boolean functions of n variables with 3 mincuts under action of symmetric group S_n.

Original entry on oeis.org

0, 0, 0, 2, 9, 30, 84, 202, 437, 872, 1627, 2874, 4853, 7882, 12383, 18902, 28130, 40934, 58391, 81812, 112790, 153238, 205430, 272054, 356270, 461754, 592774, 754252, 951831, 1191956, 1481962, 1830144, 2245867, 2739658, 3323305, 4009972, 4814323, 5752624, 6842893
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Aug 17 2000

Keywords

Examples

			There are 30 3-element antichains on an unlabeled 5-element set: {{5},{4},{3}}, {{5},{4},{2,3}}, {{5},{4},{1,2,3}}, {{5},{3,4},{2,4}}, {{5},{3,4},{1,2}}, {{5},{3,4},{1,2,4}}, {{5},{2,3,4},{1,3,4}}, {{4,5},{3,5},{3,4}}, {{4,5},{3,5},{2,5}}, {{4,5},{3,5},{2,4}},{{4,5},{3,5},{2,3,4}}, {{4,5},{3,5},{1,2}}, {{4,5},{3,5},{1,2,5}}, {{4,5},{3,5},{1,2,4}}, {{4,5},{3,5},{1,2,3,4}}, {{4,5},{2,3},{1,3,5}}, {{4,5},{2,3,5},{2,3,4}}, {{4,5},{2,3,5},{1,3,5}}, {{4,5},{2,3,5},{1,3,4}}, {{4,5},{2,3,5},{1,2,3}}, {{4,5},{2,3,5},{1,2,3,4}}, {{4,5},{1,2,3,5},{1,2,3,4}}, {{3,4,5},{2,4,5},{2,3,5}}, {{3,4,5},{2,4,5},{1,4,5}}, {{3,4,5},{2,4,5},{1,3,5}}, {{3,4,5},{2,4,5},{1,2,3}}, {{3,4,5},{2,4,5},{1,2,3,5}}, {{3,4,5},{1,2,5},{1,2,3,4}}, {{3,4,5},{1,2,4,5},{1,2,3,5}}, {{2,3,4,5},{1,3,4,5},{1,2,4,5}}.
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Programs

  • PARI
    seq(n)=Vec((2 + x + 2*x^2 + 4*x^3 - x^5 - 2*x^6)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2) + O(x^(n-2)), -(n+1)) \\ Andrew Howroyd, Feb 02 2024

Formula

G.f.: x^3*(2 + x + 2*x^2 + 4*x^3 - x^5 - 2*x^6)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2). - Andrew Howroyd, Feb 02 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 02 2024