A056782 Number of 3-element proper antichains (i.e., antichains such that every two members have nonempty intersection) on an unlabeled n-element set.
0, 0, 0, 1, 5, 18, 53, 135, 305, 633, 1220, 2217, 3834, 6359, 10172, 15776, 23807, 35075, 50585, 71576, 99551, 136332, 184084, 245384, 323260, 421256, 543484, 694709, 880393, 1106798, 1381049, 1711231, 2106469, 2577049, 3134488, 3791677, 4562974, 5464339, 6513448
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Vladeta Jovovic, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-2,2,4,3,-12,3,4,2,-2,-4,4,-1).
Programs
-
PARI
seq(n)=Vec((1 + x + 2*x^2 + 3*x^3 + 3*x^4 - x^5 - 3*x^7)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2) + O(x^(n-2)), -(n+1)) \\ Andrew Howroyd, Feb 02 2024
Formula
G.f.: x^3*(1 + x + 2*x^2 + 3*x^3 + 3*x^4 - x^5 - 3*x^7)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2). - Andrew Howroyd, Feb 02 2024
Extensions
a(8) onwards from Andrew Howroyd, Feb 02 2024