cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056793 Number of divisors of lcm(1..n).

Original entry on oeis.org

1, 2, 4, 6, 12, 12, 24, 32, 48, 48, 96, 96, 192, 192, 192, 240, 480, 480, 960, 960, 960, 960, 1920, 1920, 2880, 2880, 3840, 3840, 7680, 7680, 15360, 18432, 18432, 18432, 18432, 18432, 36864, 36864, 36864, 36864, 73728, 73728, 147456, 147456, 147456, 147456
Offset: 1

Views

Author

Labos Elemer, Aug 28 2000

Keywords

Comments

The ratio a(n)/a(n-1) equals 1 if n is a member of A024619, equals 2 if n is prime, and is a noninteger value if n is in A025475. The noninteger ratio never seems to exceed 3/2, but appears to equal 3/2 if n is a member of A001248. The noninteger ratio conforms to the formula 1/(1 - 1/n), which has 1 for limit and only 2 as single integer solution. In terms of coordinates (x,y), the lower values are (1/(1-1/n), 2^(n-1)) for n > 2. - Eric Desbiaux, Jul 28 2013
Conjectured partial sums of A101207. - Sean A. Irvine, Jun 25 2022

Examples

			n = 20: lcm(1..20) = 2*2*2*2*3*3*5*7*11*13*17*19 = 232792560 and d(232792560) = 5*3*64 = 960.
		

Crossrefs

Programs

  • Maple
    A056793 := proc(n)
        numtheory[tau](lcm($1..n)) ;
    end proc; # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    Table[DivisorSigma[0, LCM @@ Range[n]], {n, 50}]
    Table[Product[Floor[Log[Prime[i], n]] + 1, {i, PrimePi[n]}], {n, 100}] (* Wei Zhou, Jun 25 2011 *)
  • PARI
    a(n)=n+=.5;prod(e=1,log(n)\log(2),(1+1/e)^primepi(n^(1/e))) \\ Charles R Greathouse IV, Jun 06 2013
    
  • Python
    from math import lcm
    from sympy import divisor_count
    from itertools import accumulate, count, islice
    def agen(): yield from map(divisor_count, accumulate(count(1), lcm))
    print(list(islice(agen(), 46))) # Michael S. Branicky, Jun 25 2022

Formula

a(n) = d(lcm(1..n)) = A000005(A003418(n)).
a(n) = Product_{prime p <= n} (floor(log(n)/log(p)) + 1). - Wei Zhou, Jun 25 2011
a(n) = Product_{k>=1} (1+1/k)^pi(n^(1/k)), where pi(n) = A000720(n) (Singh, 2022). - Amiram Eldar, Aug 19 2023