A056793 Number of divisors of lcm(1..n).
1, 2, 4, 6, 12, 12, 24, 32, 48, 48, 96, 96, 192, 192, 192, 240, 480, 480, 960, 960, 960, 960, 1920, 1920, 2880, 2880, 3840, 3840, 7680, 7680, 15360, 18432, 18432, 18432, 18432, 18432, 36864, 36864, 36864, 36864, 73728, 73728, 147456, 147456, 147456, 147456
Offset: 1
Keywords
Examples
n = 20: lcm(1..20) = 2*2*2*2*3*3*5*7*11*13*17*19 = 232792560 and d(232792560) = 5*3*64 = 960.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..1000
- Angad Singh, Note 106.01, The number of divisors of the LCM of the first n natural numbers, The Mathematical Gazette, Vol. 106, No. 565 (2022), pp. 116-117.
Programs
-
Maple
A056793 := proc(n) numtheory[tau](lcm($1..n)) ; end proc; # Nathaniel Johnston, Jun 26 2011
-
Mathematica
Table[DivisorSigma[0, LCM @@ Range[n]], {n, 50}] Table[Product[Floor[Log[Prime[i], n]] + 1, {i, PrimePi[n]}], {n, 100}] (* Wei Zhou, Jun 25 2011 *)
-
PARI
a(n)=n+=.5;prod(e=1,log(n)\log(2),(1+1/e)^primepi(n^(1/e))) \\ Charles R Greathouse IV, Jun 06 2013
-
Python
from math import lcm from sympy import divisor_count from itertools import accumulate, count, islice def agen(): yield from map(divisor_count, accumulate(count(1), lcm)) print(list(islice(agen(), 46))) # Michael S. Branicky, Jun 25 2022
Formula
a(n) = Product_{prime p <= n} (floor(log(n)/log(p)) + 1). - Wei Zhou, Jun 25 2011
a(n) = Product_{k>=1} (1+1/k)^pi(n^(1/k)), where pi(n) = A000720(n) (Singh, 2022). - Amiram Eldar, Aug 19 2023
Comments