A056809 Numbers k such that k, k+1 and k+2 are products of two primes.
33, 85, 93, 121, 141, 201, 213, 217, 301, 393, 445, 633, 697, 841, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285
Offset: 1
Keywords
Examples
121 is in the sequence because 121 = 11^2, 122 = 2*61 and 123 = 3*41, each of which is the product of two primes.
Links
- D. W. Wilson, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Plus @@ Transpose[ FactorInteger[n]] [[2]]; Select[Range[10^4], f[ # ] == f[ # + 1] == f[ # + 2] == 2 & ] Flatten[Position[Partition[PrimeOmega[Range[5000]],3,1],{2,2,2}]] (* Harvey P. Dale, Feb 15 2015 *) SequencePosition[PrimeOmega[Range[5000]],{2,2,2}][[;;,1]] (* Harvey P. Dale, Mar 03 2024 *)
-
PARI
forstep(n=1,5000,2, if(bigomega(n)==2 && bigomega(n+1)==2 && bigomega(n+2)==2, print1(n,",")))
-
PARI
is(n)=n%4==1 && isprime((n+1)/2) && bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Sep 08 2015
-
PARI
list(lim)=my(v=List(),t); forprime(p=2,(lim+1)\2, if(bigomega(t=2*p-1)==2 && bigomega(t+2)==2, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Sep 08 2015
Formula
Extensions
Edited and extended by Robert G. Wilson v, May 04 2002
Comments