A186080
Fourth powers that are palindromic in base 10.
Original entry on oeis.org
0, 1, 14641, 104060401, 1004006004001, 10004000600040001, 100004000060000400001, 1000004000006000004000001, 10000004000000600000040000001, 100000004000000060000000400000001, 1000000004000000006000000004000000001, 10000000004000000000600000000040000000001, 100000000004000000000060000000000400000000001
Offset: 1
- P. De Geest, Palindromic cubes (The Simmons test is mentioned here) [broken link]
- G. J. Simmons, Palindromic powers, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy]
-
[ p: n in [0..10000000] | s eq Reverse(s) where s is Intseq(p) where p is n^4 ];
-
Do[If[Module[{idn = IntegerDigits[n^4, 10]}, idn == Reverse[idn]], Print[n^4]], {n, 100000001}]
A263613
Palindromic numbers in base 4 that are cubes.
Original entry on oeis.org
0, 1, 1331, 1030301, 1003003001, 1000300030001, 1000030000300001, 1000003000003000001, 1000000300000030000001, 1000000030000000300000001, 1000000003000000003000000001, 1000000000300000000030000000001, 1000000000030000000000300000000001, 1000000000003000000000003000000000001
Offset: 1
A348429
Perfect powers m^k, m >= 1, k >= 2 such that m and m^k both are palindromes.
Original entry on oeis.org
1, 4, 8, 9, 121, 343, 484, 1331, 10201, 12321, 14641, 40804, 44944, 1002001, 1030301, 1234321, 1367631, 4008004, 100020001, 102030201, 104060401, 121242121, 123454321, 125686521, 400080004, 404090404, 1003003001, 10000200001, 10221412201, 12102420121, 12345654321, 40000800004
Offset: 1
First few terms are equal to 1, 2^2, 2^3, 3^2, 11^2, 7^3, 22^2, 11^3, 101^2, 111^2, 11^4 = 121^2, 202^2, 212^2, 1001^2, 101^3, 1111^2, 111^3.
-
Block[{n = 10^6, nn, s}, s = Select[Range[2, n], PalindromeQ]; nn = Max[s]^2; {1}~Join~Union@ Reap[Table[Do[If[PalindromeQ[m^k], Sow[m^k]], {k, 2, Log[m, nn]}], {m, s}]][[-1, -1]]] (* Michael De Vlieger, Oct 18 2021 *)
-
ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113
isok(m) = if (m==1, return (1)); my(p); ispal(m) && ispower(m, , &p) && ispal(p); \\ Michel Marcus, Oct 19 2021
-
ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113
lista(nn) = {my(list = List(1)); for (k=2, sqrtint(nn), if (ispal(k), my(q = k^2); until (q > nn, if (ispal(q), listput(list, q)); q *= k;););); vecsort(list,,8);} \\ Michel Marcus, Oct 20 2021
-
# see link for faster version
def ispal(n): s = str(n); return s == s[::-1]
def aupto(limit):
aset, m, mm = {1}, 2, 4
while mm <= limit:
if ispal(m):
mk = mm
while mk <= limit:
if ispal(mk): aset.add(mk)
mk *= m
mm += 2*m + 1
m += 1
return sorted(aset)
print(aupto(10**11)) # Michael S. Branicky, Oct 18 2021
Showing 1-3 of 3 results.
Comments