cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A186080 Fourth powers that are palindromic in base 10.

Original entry on oeis.org

0, 1, 14641, 104060401, 1004006004001, 10004000600040001, 100004000060000400001, 1000004000006000004000001, 10000004000000600000040000001, 100000004000000060000000400000001, 1000000004000000006000000004000000001, 10000000004000000000600000000040000000001, 100000000004000000000060000000000400000000001
Offset: 1

Views

Author

Matevz Markovic, Feb 11 2011

Keywords

Comments

See A056810 (the main entry for this problem) for further information, including the search limit. - N. J. A. Sloane, Mar 07 2011
Conjecture: If k^4 is a palindrome > 0, then k begins and ends with digit 1, all other digits of k being 0.
The number of zeros in 1x1, where the x are zeros, is the same as (the number of zeros)/4 in (1x1)^4 = 1x4x6x4x1.

Crossrefs

Programs

  • Magma
    [ p: n in [0..10000000] | s eq Reverse(s) where s is Intseq(p) where p is n^4 ];
  • Mathematica
    Do[If[Module[{idn = IntegerDigits[n^4, 10]}, idn == Reverse[idn]], Print[n^4]], {n, 100000001}]

Formula

a(n) = A056810(n)^4.

Extensions

a(11)-a(13) using extensions of A056810 from Hugo Pfoertner, Oct 22 2021

A263613 Palindromic numbers in base 4 that are cubes.

Original entry on oeis.org

0, 1, 1331, 1030301, 1003003001, 1000300030001, 1000030000300001, 1000003000003000001, 1000000300000030000001, 1000000030000000300000001, 1000000003000000003000000001, 1000000000300000000030000000001, 1000000000030000000000300000000001, 1000000000003000000000003000000000001
Offset: 1

Views

Author

N. J. A. Sloane, Oct 22 2015

Keywords

Comments

There is an obvious pattern here, but it is not known how long it will continue.
The cube roots (written in base 4) are 0, 1, 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001 (coinciding with A056810 to this point).

Crossrefs

Formula

Conjectures from Chai Wah Wu, Dec 25 2023: (Start)
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n > 6.
G.f.: x^2*(-7000000*x^4 + 6446000*x^3 - 336330*x^2 + 220*x + 1)/((x - 1)*(10*x - 1)*(100*x - 1)*(1000*x - 1)). (End)

Extensions

a(11) from Chai Wah Wu, Oct 23 2015
a(12)-a(14) from Chai Wah Wu, Sep 26 2017

A348429 Perfect powers m^k, m >= 1, k >= 2 such that m and m^k both are palindromes.

Original entry on oeis.org

1, 4, 8, 9, 121, 343, 484, 1331, 10201, 12321, 14641, 40804, 44944, 1002001, 1030301, 1234321, 1367631, 4008004, 100020001, 102030201, 104060401, 121242121, 123454321, 125686521, 400080004, 404090404, 1003003001, 10000200001, 10221412201, 12102420121, 12345654321, 40000800004
Offset: 1

Views

Author

Bernard Schott, Oct 18 2021

Keywords

Comments

Complement of A348319 relative to the positive perfect powers A001597.
This sequence is infinite since each square (10^m+1)^2 is a term for m >= 0 and A033934 is a subsequence.
Observation: terms always contain an odd number of digits.
For k = 2, subsequence of palindromes whose square root is a palindrome is A057136 (see A057135).
For k = 3, except for 2201^3 = 10662526601, all known palindromic cubes have a palindromic rootnumber (see A002780 and A002781).
For k = 4, all known integers whose fourth power is a palindrome are also palindromes (see A056810 and subsequence A186080).
For k >= 5, G. J. Simmons conjectured there are no palindromes of the form m^k for k >= 5 and m > 1 (see Simmons link p. 98); according to this conjecture, all the terms are of the form (palindrome)^k, with 2 <= k <= 4.

Examples

			First few terms are equal to 1, 2^2, 2^3, 3^2, 11^2, 7^3, 22^2, 11^3, 101^2, 111^2, 11^4 = 121^2, 202^2, 212^2, 1001^2, 101^3, 1111^2, 111^3.
		

Crossrefs

Programs

  • Mathematica
    Block[{n = 10^6, nn, s}, s = Select[Range[2, n], PalindromeQ]; nn = Max[s]^2; {1}~Join~Union@ Reap[Table[Do[If[PalindromeQ[m^k], Sow[m^k]], {k, 2, Log[m, nn]}], {m, s}]][[-1, -1]]] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113
    isok(m) = if (m==1, return (1)); my(p); ispal(m) && ispower(m, , &p) && ispal(p); \\ Michel Marcus, Oct 19 2021
    
  • PARI
    ispal(x) = my(d=digits(x)); d == Vecrev(d); \\ A002113
    lista(nn) = {my(list = List(1)); for (k=2, sqrtint(nn), if (ispal(k), my(q = k^2); until (q > nn, if (ispal(q), listput(list, q)); q *= k;););); vecsort(list,,8);} \\ Michel Marcus, Oct 20 2021
  • Python
    # see link for faster version
    def ispal(n): s = str(n); return s == s[::-1]
    def aupto(limit):
        aset, m, mm = {1}, 2, 4
        while mm <= limit:
            if ispal(m):
                mk = mm
                while mk <= limit:
                    if ispal(mk): aset.add(mk)
                    mk *= m
            mm += 2*m + 1
            m += 1
        return sorted(aset)
    print(aupto(10**11)) # Michael S. Branicky, Oct 18 2021
    
Showing 1-3 of 3 results.