cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056818 A number n is included if n^2 divides n-th term of A056855.

Original entry on oeis.org

1, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 25, 26, 29, 31, 34, 35, 37, 39, 40, 41, 42, 43, 47, 49, 50, 52, 53, 55, 57, 58, 59, 61, 63, 65, 67, 68, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 85, 89, 91, 93, 95, 97, 100, 101, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Leroy Quet, Sep 01 2000

Keywords

Examples

			Fifth term of A056855 is 50 and 50 is divisible by 5^2. So 5 is included.
		

Crossrefs

Cf. A056855.

A099940 a(n) = 2*(A056855(n)) /(phi(n)*n), where phi() is the Euler phi function.

Original entry on oeis.org

2, 1, 1, 1, 5, 1, 84, 11, 184, 15, 193248, 23, 19056960, 833, 33740, 64035, 520105017600, 2473, 130859579289600, 203685, 963513600, 23748417, 16397141420298240000, 645119, 555804546402631680, 8527366575
Offset: 1

Views

Author

Leroy Quet, Nov 12 2004

Keywords

Comments

Conjecture: this sequence consists completely of integers.
From Leudesdorf's theorem this is an integer sequence. - Benoit Cloitre, Nov 13 2004

Examples

			a(6) = 2*(1 + 1/5)*1*5/(6*2) = 1.
		

References

  • G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, fifth edition, Oxford Science Publication, pp. 100-102

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = Select[Range[n], GCD[ #, n] == 1 &]}, 2Plus @@ (Times @@ k*Plus @@ 1/k)/EulerPhi[n]/n]; Table[ f[n], {n, 26}] (* Robert G. Wilson v, Nov 16 2004 *)

Extensions

More terms from Don Reble, Nov 12 2004, who remarks that the conjecture is true for n <= 5000.

A099001 a(n) = (Sum 1/k) (Product k), where both the sum and product are over those k where 1 <= k <= n/2 and gcd(k,n) = 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 11, 4, 14, 4, 274, 6, 1764, 23, 106, 176, 109584, 47, 1026576, 300, 6960, 1689, 120543840, 552, 26854848, 19524, 7962160, 34986, 283465647360, 1312, 4339163001600, 4098240, 164944640, 4098240, 13833580032, 133542, 22376988058521600, 71697105
Offset: 2

Views

Author

Leroy Quet, Nov 13 2004

Keywords

Examples

			a(8) = (1 + 1/3)*1*3 = 4 because 1 and 3 are those positive integers <= 8/2 and coprime to 8.
		

Crossrefs

Cf. A056855.

Programs

  • Maple
    b:=proc(n) local B,k: B:={}: for k from 1 to n/2 do if gcd(k,n)=1 then B:=B union {k} else B:=B fi od end: a:=proc(n) add(1/b(n)[j],j=1..nops(b(n)))*product(b(n)[j],j=1..nops(b(n))) end: seq(a(n),n=2..40); # Emeric Deutsch, Apr 22 2006
    # second Maple program:
    a:= n-> (l-> mul(i, i=l)*add(1/i, i=l))(
             select(x-> igcd(x, n)=1, [$1..n/2])):
    seq(a(n), n=2..40);  # Alois P. Heinz, May 22 2015
  • Mathematica
    a[n_] := Module[{r = Range[Floor[n/2]], s}, s = Select[r, GCD[#, n]==1&]; Total[1/s] Times @@ s];
    a /@ Range[2, 40] (* Jean-François Alcover, Nov 18 2020 *)

Extensions

More terms from Emeric Deutsch, Apr 22 2006
Showing 1-3 of 3 results.