A056859 Triangle of number of falls in set partitions of n.
1, 2, 0, 4, 1, 0, 8, 7, 0, 0, 16, 32, 4, 0, 0, 32, 121, 49, 1, 0, 0, 64, 411, 360, 42, 0, 0, 0, 128, 1304, 2062, 624, 22, 0, 0, 0, 256, 3949, 10163, 6042, 730, 7, 0, 0, 0, 512, 11567, 45298, 45810, 12170, 617, 1, 0, 0, 0, 1024, 33056, 187941, 296017, 141822, 18325, 385, 0, 0, 0, 0
Offset: 1
Examples
For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 fall, at i = 2. T(n=3,f=0)=4 counts the partitions {1,1,1}, {1,1,2}, {1,2,2}, and {1,2,3}. T(n=3,f=1) counts the partition {1,2,1}. - _R. J. Mathar_, Mar 04 2016 1; 2,0; 4,1,0; 8,7,0,0; 16,32,4,0,0; 32,121,49,1,0,0; 64,411,360,42,0,0,0; 128,1304,2062,624,22,0,0,0; 256,3949,10163,6042,730,7,0,0,0; 512,11567,45298,45810,12170,617,1,0,0,0; 1024,33056,187941,296017,141822,18325,385,0,0,0,0; 2048,92721,739352,1708893,1318395,330407,21605,176,0,0,0,0;
References
- W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]
Links
- Alois P. Heinz, Rows n = 1..100, flattened
Programs
-
Maple
b:= proc(n, i, m) option remember; `if`(n=0, x, expand(add(b(n-1, j, max(m, j))* `if`(j (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1, 0)): seq(T(n), n=1..12); # Alois P. Heinz, Mar 24 2016
-
Mathematica
b[n_, i_, m_] := b[n, i, m] = If[n == 0, x, Expand[Sum[b[n - 1, j, Max[m, j]]*If[j < i, x, 1], {j, 1, m + 1}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1, 0]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, May 24 2016, after Alois P. Heinz *)
Extensions
Corrected and extended by Franklin T. Adams-Watters, Jun 08 2006
Comments