A056860 Triangle T(n,k) = number of element-subset partitions of {1..n} with n-k+1 equalities (n >= 1, 1 <= k <= n).
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 20, 15, 1, 5, 20, 50, 75, 52, 1, 6, 30, 100, 225, 312, 203, 1, 7, 42, 175, 525, 1092, 1421, 877, 1, 8, 56, 280, 1050, 2912, 5684, 7016, 4140, 1, 9, 72, 420, 1890, 6552, 17052, 31572, 37260, 21147
Offset: 1
Examples
T(n,k) starts: 1; 1, 1; 1, 2, 2; 1, 3, 6, 5; 1, 4, 12, 20, 15; 1, 5, 20, 50, 75, 52; 1, 6, 30, 100, 225, 312, 203; 1, 7, 42, 175, 525, 1092, 1421, 877; 1, 8, 56, 280, 1050, 2912, 5684, 7016, 4140; 1, 9, 72, 420, 1890, 6552, 17052, 31572, 37260, 21147; Building row sums Sum_{c=1..k} T(n,c), the following array results: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... 1, 3, 5, 5, 5, 5, 5, 5, 5, 5, ... 1, 4, 10, 15, 15, 15, 15, 15, 15, 15, ... 1, 5, 17, 37, 52, 52, 52, 52, 52, 52, ... 1, 6, 26, 76, 151, 203, 203, 203, 203, 203, ... 1, 7, 37, 137, 362, 674, 877, 877, 877, 877, ... 1, 8, 50, 225, 750, 1842, 3263, 4140, 4140, 4140, ... 1, 9, 65, 345, 1395, 4307, 9991, 17007, 21147, 21147, ...
References
- W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000.
Links
- David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
Crossrefs
Formula
T(n, k) = binomial(n-1, k-1)*B(k-1) where B denotes the Bell numbers A000110. - David Callan, Jul 20 2005
Extensions
More terms from David Callan, Jul 20 2005
Comments