cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056862 Triangle T(n,k) is the number of restricted growth strings (RGS) of set partitions of {1..n} that have a decrease at index k (1<=k

Original entry on oeis.org

0, 0, 1, 0, 3, 4, 0, 10, 14, 16, 0, 37, 54, 63, 68, 0, 151, 228, 271, 296, 311, 0, 674, 1046, 1264, 1396, 1478, 1530, 0, 3263, 5178, 6349, 7084, 7555, 7862, 8065, 0, 17007, 27488, 34139, 38448, 41287, 43184, 44467, 45344, 0, 94828, 155642, 195494, 222044, 239976, 252230, 260690, 266584, 270724
Offset: 2

Views

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

Keywords

Comments

Number of falls s_k > s_{k+1} in a RGS [s_1, ..., s_n] of a set partition of {1, ..., n}, where s_i is the subset containing i, s_1 = 1 and s_i <= 1 + max(j
Note that the number of equalities at any index is B(n-1), where B(n) are the Bell numbers. - Franklin T. Adams-Watters, Jun 08 2006

Examples

			For example, [1, 2, 1, 2, 2, 3] is the RGS of a set partition of {1, 2, 3, 4, 5, 6} and has 1 fall, at i = 2.
0;
0,1;
0,3,4;
0,10,14,16;
0,37,54,63,68;
0,151,228,271,296,311;
0,674,1046,1264,1396,1478,1530;
0,3263,5178,6349,7084,7555,7862,8065;
0,17007,27488,34139,38448,41287,43184,44467,45344;
0,94828,155642,195494,222044,239976,252230,260690,266584,270724;
0,562595,935534,1186845,1358452,1476959,1559602,1617737,1658952,1688379, 1709526;
		

References

  • W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [apparently unpublished, Joerg Arndt, Mar 05 2016]

Crossrefs

Cf. Bell numbers A005493.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, [1, 0],
          add((p-> p+[0, `if`(j (p-> seq(coeff(p, x, i), i=1..n-1))(b(n, 1, 0$2)[2]):
    seq(T(n), n=2..12);  # Alois P. Heinz, Mar 24 2016
  • Mathematica
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, If[jJean-François Alcover, May 23 2016, after Alois P. Heinz *)

Formula

T(n,k) = B(n) - B(n-1) - A056861(n,k). - Franklin T. Adams-Watters, Jun 08 2006
Conjecture: T(n,3) = 2*A011965(n). - R. J. Mathar, Mar 08 2016

Extensions

Edited and extended by Franklin T. Adams-Watters, Jun 08 2006
Clarified definition and edited comment and example, Joerg Arndt, Mar 08 2016
Data corrected, R. J. Mathar, Mar 08 2016