A056874 Primes of form x^2+xy+3y^2, discriminant -11.
3, 5, 11, 23, 31, 37, 47, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 179, 181, 191, 199, 223, 229, 251, 257, 269, 311, 313, 317, 331, 353, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521, 577, 587, 599
Offset: 1
Links
- Vincenzo Librandi, N. J. A. Sloane and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi, next 4000 terms from N. J. A. Sloane]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[1, 1, 3, 100000] (* see A106856 *)
-
PARI
{ fc2(a,b,c,M) = my(p,t1,t2,n); m = 0; for(n=1,M, p = prime(n); t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, m++; print(m," ",p ))); } fc2(1,-1,3,10703);
Extensions
Edited by N. J. A. Sloane, Jun 01 2014 and Jun 16 2014
Comments