cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056899 Primes of the form k^2 + 2.

Original entry on oeis.org

2, 3, 11, 83, 227, 443, 1091, 1523, 2027, 3251, 6563, 9803, 11027, 12323, 13691, 15131, 21611, 29243, 47963, 50627, 56171, 59051, 62003, 65027, 74531, 88211, 91811, 95483, 103043, 119027, 123203, 131771, 136163, 140627, 149771, 173891
Offset: 1

Views

Author

Henry Bottomley, Jul 05 2000

Keywords

Comments

Also, primes of the form k^2 - 2k + 3.
Note that all terms after the first two are equal to 11 modulo 72 and that (a(n)-11)/72 is a triangular number, since they have to be 2 more than the square of an odd multiple of 3 to be prime, and if k = 6*m+3 then a(n) = k^2 + 2 = 72*m*(m+1)/2 + 11.
The quotient cycle length is 2 in the continued fraction expansion of sqrt(p) for these primes. E.g.: cfrac(sqrt(6563),6) = 81+1/(81+1/(162+1/(81+1/(162+1/(81+1/(162+`...`)))))). - Labos Elemer, Feb 22 2001
Primes in A059100; except for a(2)=3 a subsequence of A007491 and congruent to 2 modulo 9. For n>2, a(n)=11 (mod 72). - M. F. Hasler, Apr 05 2009

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Intersection of A146327 and A000040; intersection of A059100 and A000040.
Cf. A002496.

Programs

  • Magma
    [n: n in PrimesUpTo(175000) | IsSquare(n-2)];  // Bruno Berselli, Apr 05 2011
    
  • Magma
    [ a: n in [0..450] | IsPrime(a) where a is n^2 +2 ]; // Vincenzo Librandi, Apr 06 2011
    
  • Maple
    select(isprime, [seq(t^2+2, t = 0..1000)]); # Robert Israel, Sep 03 2015
  • Mathematica
    Select[ Range[0, 500]^2 + 2, PrimeQ] (* Robert G. Wilson v, Sep 03 2015 *)
  • PARI
    print1("2, 3");forstep(n=3,1e4,6,if(isprime(t=n^2+2),print1(", "t))) \\ Charles R Greathouse IV, Jul 19 2011

Formula

For n>1, a(n) = 72*A000217(A056900(n-2))+11
a(n) = A067201(n)^2 + 2. - M. F. Hasler, Apr 05 2009