cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A056909 Primes of the form k^2+6.

Original entry on oeis.org

7, 31, 127, 367, 631, 967, 1231, 3727, 4231, 6247, 7927, 8287, 11887, 17167, 21031, 22807, 30631, 34231, 39607, 48847, 72367, 108247, 109567, 126031, 160807, 185767, 198031, 231367, 235231, 261127, 265231, 279847, 290527, 323767, 354031, 366031, 373327, 421207
Offset: 1

Views

Author

Henry Bottomley, Jul 07 2000

Keywords

Comments

a(n) mod 120 = 7 or 31 for all n.

Examples

			a(2)=127 since 11^2+6=127 which is prime.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..700] | IsPrime(a) where a is n^2+6]; // Vincenzo Librandi, Nov 30 2011
    
  • Mathematica
    Intersection[Table[n^2+6,{n,0,10^2}],Prime[Range[9*10^3]]] (* or *) For[i=6,i<=6,a={};Do[If[PrimeQ[n^2+i],AppendTo[a,n^2+i]],{n,0,100}];Print["n^2+",i,",",a];i++ ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    Select[Table[n^2+6,{n,0,7000}],PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)
  • PARI
    list(lim)=my(v=List(),t); forstep(k=1,sqrtint(lim\1-6),2, if(isprime(t=k^2+6), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Nov 06 2024

Formula

a(n) = 36*A056910(n)^2 + 12*A056910(n) + 7.
a(n) >> n^2 log n. - Charles R Greathouse IV, Nov 06 2024
Showing 1-1 of 1 results.