A057005 Number of conjugacy classes of subgroups of index n in free group of rank 2.
1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, 35704007, 433460014, 5687955737, 80257406982, 1211781910755, 19496955286194, 333041104402877, 6019770408287089, 114794574818830735, 2303332664693034476, 48509766592893402121, 1069983257460254131272
Offset: 1
Keywords
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..450
- M. Deryagina, On the enumeration of hypermaps which are self-equivalent with respect to reversing the colors of vertices, Preprint 2016.
- J. B. Geloun and S. Ramgoolam, Counting Tensor Model Observables and Branched Covers of the 2-Sphere, arXiv preprint arXiv:1307.6490 [hep-th], 2013.
- Paawan Jethva, Exploring the Euler Characteristics of Dessins d'Enfants, Univ. Adelaide (Australia, 2023).
- G. A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc. (3) 37:2 (1978), 273-307.
- J. H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Th., 23 (1996), 105-109.
- J. H. Kwak and J. Lee, Enumeration of graph coverings and surface branched coverings, Lecture Note Series 1 (2001), Com^2MaC-KOSEF, Korea. See chapter 3.
- V. A. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta Applic. Math., 52 (1998), 91-120.
- Carlos I. Pérez-Sánchez, The full Ward-Takahashi Identity for colored tensor models, arXiv preprint arXiv:1608.08134 [math-ph], 2016.
- M. Planat, A. Giorgetti, F. Holweck, and M. Saniga, Quantum contextual finite geometries from dessins d'efants, arXiv:1310.4267 [quant-ph], 2013-2015.
- P. Vrana, On the algebra of local unitary invariants of pure and mixed quantum states, J. Phys A: Math. Theor. 44 (2011) 225304 doi:10.1088/1751-8113/44/22/225304, Table 2.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- L. Zapponi, What is a dessin d'enfant?, Notices AMS, 50:7, 2003, 788-789.
- Index entries for sequences related to groups
Programs
-
Mathematica
f[1] = {a[0] -> 0, a[1] -> 1}; f[max_] := f[max] = (p1 = Product[(1 - x^n)^(-a[n]), {n, 0, max}]; p2 = Product[Sum[j!*If[j == 0, 1, i^j]*x^(i*j), {j, 0, max}], {i, 0, max}]; s = Series[p1 - p2 /. f[max - 1], {x, 0, max}] // Normal // Expand; sol = Thread[CoefficientList[s, x] == 0] // Solve // First; Join[f[max - 1], sol]); Array[a, 22] /. f[22] (* Jean-François Alcover, Mar 11 2014, updated Jan 01 2021 *)
Formula
prod_{n>0} (1-x^n)^{-a(n)} = prod_{i>0} sum_{j>=0} j!*i^j*x^{i*j}. (Liskovets) - Valery A. Liskovets, Mar 17 2005 ... and both sides = sum_{j>=0} A110143(j)*x^j . - R. J. Mathar, Oct 18 2012
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for the coefficients see A113869. - Vaclav Kotesovec, Aug 09 2019
Extensions
More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
Comments