cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057005 Number of conjugacy classes of subgroups of index n in free group of rank 2.

Original entry on oeis.org

1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, 35704007, 433460014, 5687955737, 80257406982, 1211781910755, 19496955286194, 333041104402877, 6019770408287089, 114794574818830735, 2303332664693034476, 48509766592893402121, 1069983257460254131272
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Comments

Number of (unlabeled) dessins d'enfants with n edges. A dessin d'enfant ("child's drawing") by A. Grothendieck, 1984, is a connected bipartite multigraph with properly bicolored nodes (w and b) in which a cyclic order of the incident edges is assigned to every node. For n=2 these are w--b--w, b--w--b and w==b. - Valery A. Liskovets, Mar 17 2005
Also (apparently), a(n+1) = number of sensed hypermaps with n darts on a surface of any genus (see Walsh 2012). - N. J. A. Sloane, Aug 01 2012
Response from Timothy R. Walsh, Aug 01 2012: The conjecture in the previous comment is true. A combinatorial map is a connected graph, loops and multiple edges allowed, in which a cyclic order of the incident edge-ends is assigned to every node. The equivalence between combinatorial maps and topological maps was conjectured by several researchers and finally proved by Jones and Singerman. In my 1975 paper "Generating nonisomorphic maps without storing them", I established a genus-preserving bijection between hypermaps with n darts, w vertices and b edges and properly bicolored bipartite maps with n edges, w white vertices and b black vertices. A bipartite map can't have any loops; so a combinatorial bipartite map is a multigraph and it suffices to impose a cyclic order of the edges, rather than the edge-ends, incident to each node. Thus it is just the child's drawing described above by Liskovets.

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Cf. A057004-A057013. Inverse Euler transform of A110143.

Programs

  • Mathematica
    f[1] = {a[0] -> 0, a[1] -> 1};
    f[max_] := f[max] = (p1 = Product[(1 - x^n)^(-a[n]), {n, 0, max}]; p2 = Product[Sum[j!*If[j == 0, 1, i^j]*x^(i*j), {j, 0, max}], {i, 0, max}];
    s = Series[p1 - p2 /. f[max - 1], {x, 0, max}] // Normal // Expand;
    sol = Thread[CoefficientList[s, x] == 0] // Solve // First;
    Join[f[max - 1], sol]);
    Array[a, 22] /. f[22] (* Jean-François Alcover, Mar 11 2014, updated Jan 01 2021 *)

Formula

prod_{n>0} (1-x^n)^{-a(n)} = prod_{i>0} sum_{j>=0} j!*i^j*x^{i*j}. (Liskovets) - Valery A. Liskovets, Mar 17 2005 ... and both sides = sum_{j>=0} A110143(j)*x^j . - R. J. Mathar, Oct 18 2012
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for the coefficients see A113869. - Vaclav Kotesovec, Aug 09 2019

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001