cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A110143 Row sums of triangle A110141.

Original entry on oeis.org

1, 1, 4, 11, 43, 161, 901, 5579, 43206, 378360, 3742738, 40853520, 488029621, 6323154547, 88308425755, 1322120265238, 21122364398761, 358647945023885, 6449299885654827, 122436442904193940, 2447046870232798369, 51358050784584629338, 1129314001779283063606
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2005

Keywords

Comments

Row n of triangle A110141 lists the denominators of unit fraction coefficients of the products of {c_k}, in ascending order by indices of {c_k}, in the coefficient of x^n in exp(Sum_{k>=1} c_k/k*x^k). There are A000041(n) terms in row n of triangle A110141.
Also, number of orbits of Sym(n)^2 where Sym_n acts by conjugation. Compare the MathOverflow discussion, also Bogaerts-Dukes 2014, and A241584, A241585. - Peter J. Dukes, May 12 2014
Number of isomorphism classes of n-fold coverings of a connected graph with circuit rank 2 [Kwak and Lee]. - Álvar Ibeas, Mar 25 2015

References

  • P. A. MacMahon, The expansion of determinants and permanents in terms of symmetric functions, in Proc. ICM Toronto (ed. J. C. Fields), Toronto University Press, 1924, vol 1, 319-330.
  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. Appears to contain this sequence in Table 2. [Added by N. J. A. Sloane, Nov 12 2009]

Crossrefs

Programs

  • Maple
    # Using a function from Alois P. Heinz in A279038:
    b:= proc(n, i) option remember; `if`(n=0, [1],
          `if`(i<1, [], [seq(map(x-> x*i^j*j!,
          b(n-i*j, i-1))[], j=0..n/i)]))
        end:
    seq(add(i, i=b(n$2)), n=0..22); # Peter Luschny, Dec 19 2016
  • Mathematica
    Table[Total[Apply[Times, Tally[#]/.{a_Integer,b_}->a^b b!]& /@ IntegerPartitions[n]],{n,0,21}] (* Wouter Meeussen, Oct 17 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Flatten[ Table[ Map[ #*i^j*j!&, b[n-i*j, i-1]], {j, 0, n/i}]]]]; Table[Sum[i, {i, b[n, n]}], {n, 0, 22}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
    nmax = 25; CoefficientList[Series[Product[Sum[k!*j^k*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 08 2019 *)
    m = 30; CoefficientList[Series[Product[-Gamma[0, -1/(x^j*j)] * Exp[-1/(x^j*j)], {j, 1, m}] / (x^(m*(m + 1)/2)*m!), {x, 0, m}], x] (* Vaclav Kotesovec, Dec 07 2020 *)
  • Sage
    def A110143(n):
        return sum(p.aut() for p in Partitions(n))
    [A110143(n) for n in range(9)]
    # Álvar Ibeas, Mar 26 2015

Formula

G.f.: B(x)*B(2*x^2)*B(3*x^3)*..., where B(x) is g.f. of A000142. - Vladeta Jovovic, Feb 18 2007
a(n) ~ n! * (1 + 2/n^2 + 5/n^3 + 23/n^4 + 106/n^5 + 537/n^6 + 3143/n^7 + 20485/n^8 + 143747/n^9 + 1078660/n^10), for coefficients see A279819. - Vaclav Kotesovec, Mar 16 2015

A057004 Array T(n,k) = number of conjugacy classes of subgroups of index k in free group of rank n, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 41, 26, 1, 1, 31, 235, 604, 97, 1, 1, 63, 1361, 14120, 13753, 624, 1, 1, 127, 7987, 334576, 1712845, 504243, 4163, 1, 1, 255, 47321, 7987616, 207009649, 371515454, 24824785, 34470, 1, 1, 511, 281995, 191318464
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Examples

			Array T(n,k) begins:
1 1 1 1 1 1 1 ...
1 3 7 26 97 624 4163 ...
1 7 41 604 13753 504243 ...
1 15 235 14120 1712845 ...
		

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Rows, columns, main diagonal give A057005-A057013, A160871.

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A214819 Number of genus 2 sensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 4, 48, 708, 9807, 119436, 1355400, 14561360, 150429819, 1506841872, 14732613116, 141226638540, 1331912032173, 12390368538412, 113927616087252, 1037080582036632, 9358430685657218, 83804192879934456, 745394788170961932, 6590038606472968276
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    hO[d_, , ] := 0 /; !IntegerQ@d;
    hO[d_, g_, q_] := Multinomial[d+2-2g-Total@q, Sequence@@q] h[g][d];
    h[0][m_] := 3 2^(m-1) Binomial[2m,m] / ((m+1)(m+2));
    h[1][d_] := Sum[2^k (4^(d-2-k)-1) Binomial[d+k,k], {k,0,d-3}] / 3;
    h[2][d_] := Coefficient[-# (# - 1)^5 (#^4 - 6 #^3 + 36 #^2 - 50 # + 51) / (4 (# - 2)^7 (# + 1)^5) &[(1-Sqrt[1-8x])/(4x)+O[x]^(d+1)], x, d];
    a2[d_] := (h[2][d] + 4hO[d/2,1,{2}] + hO[d/2,0,{6}] + 6hO[d/3,0,{0,4}] + 2hO[d/4,0,{2,0,2}] + 12hO[d/5,0,{0,0,0,3}] + 2hO[d/6,0,{2,2}] + 2hO[d/6,0,{0,1,0,0,2}] + 4hO[d/8,0,{1,0,0,0,0,0,2}] + 4hO[d/10,0,{1,0,0,1,0,0,0,0,1}]) / d;
    Table[a2[n], {n, 23}] (* Andrei Zabolotskii, Jun 24 2025, using Mednykh & Nedela's Theorem 8 *)

Extensions

Terms a(13) onwards from Andrei Zabolotskii, Jun 24 2025

A214820 Number of genus 3 sensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 30, 1155, 29910, 601364, 10260804, 156469887, 2195431068, 28897471080, 361514582340, 4339280187364, 50323775391144, 566914469842923, 6229721664499224, 67000302262906866, 707159710965012834, 7341038807584085816, 75093327553430134548
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    hO[d_, , ] := 0 /; !IntegerQ@d;
    hO[d_, g_, q_] := Multinomial[d+2-2g-Total@q, Sequence@@q] h[g][d];
    h[0][m_] := 3 2^(m-1) Binomial[2m, m] / ((m+1)(m+2));
    h[1][d_] := Sum[2^k (4^(d-2-k)-1) Binomial[d+k, k], {k, 0, d-3}] / 3;
    h[2][d_] := Coefficient[-# (# - 1)^5 (#^4 - 6 #^3 + 36 #^2 - 50 # + 51) / (4 (# - 2)^7 (# + 1)^5) &[(1-Sqrt[1-8x])/(4x) + O[x]^(d+1)], x, d];
    h[3][d_] := Coefficient[# (# - 1)^7(5 #^9 - 60 #^8 + 675 #^7 - 2947 #^6 + 10005 #^5 - 20235 #^4 + 28297 #^3 - 23937 #^2 + 11418 # - 1781)/(2 (# - 2)^12(# + 1)^9) &[(1-Sqrt[1-8x])/(4x) + O[x]^(d+1)],x,d];
    a3[d_] := (h[3][d] + 15h[2][d/2] + 4hO[d/2,1,{4}] + hO[d/2,0,{8}] + 18hO[d/3,1,{2}] + 10hO[d/3,0,{5}] + 12hO[d/4,1,{2}] + 2hO[d/4,0,{3,2}] + 8hO[d/4,0,{4}] + 2hO[d/6,0,{1,2,1}] + 2hO[d/6,0,{2,2}] + 30hO[d/7,0,{3}] + 8hO[d/8,0,{1,2}] + 12hO[d/9,0,{1,2}] + 4hO[d/12,0,{1,2}] + 4hO[d/12,0,{1,1,1}] + 6hO[d/14,0,{1,1,1}]) / d;
    Table[a3[n],{n,23}] (* Andrei Zabolotskii, Jun 24 2025, using Mednykh & Nedela's Theorem 9 *)

Extensions

Terms a(13) onwards from Andrei Zabolotskii, Jun 24 2025

A214821 Number of genus 0 unsensed hypermaps with n darts.

Original entry on oeis.org

1, 3, 6, 20, 57, 240, 954, 4566, 22641, 121823, 683307, 4004055
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A214823 Number of genus 2 unsensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 4, 39, 456, 5554, 63378, 698568, 7391499, 75807708
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A215017 Number of genus 3 unsensed hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 25, 678, 15867, 307880, 5180472, 78573507
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A215018 Number of unsensed hypermaps with n darts and any genus.

Original entry on oeis.org

1, 3, 7, 26, 91, 490, 2785, 20434, 171579, 1671193, 18192737, 218487504
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

A380453 Number of dessins d'enfants D(n,g) with n edges of genus g, read by rows.

Original entry on oeis.org

1, 3, 6, 1, 20, 6, 60, 33, 4, 291, 285, 48, 1310, 2115, 708, 30, 6975, 16533, 9807, 1155, 37746, 126501, 119436, 29910, 900, 215602, 972441, 1355400, 601364, 58032, 1262874, 7451679, 14561360, 10260804, 2112300, 54990, 7611156, 57167260, 150429819, 156469887, 57017238, 4764654
Offset: 1

Views

Author

Paawan Jethva, Jun 22 2025

Keywords

Comments

Note that Sum_{g>=0} D(n,g) gives A057005 which is the number of dessins d'enfants with n edges (as one would hope).
We get a new genus every two edges.
n=7 is the first time we have more dessins of genus 1 than genus 0.

Examples

			Triangle D(n,g) begins:
   n\g    0      1      2      3      4      ...
   1      1
   2      3
   3      6      1
   4      20     6
   5      60     33     4
   6      291    285    48
   7      1310   2115   708    30
   8      6975   16533  9807   1155
   9      37746  126501 119436 29910  900
   ...
		

Crossrefs

Cf. A057005.
Columns: A090371, A118094, A214819, A214820, A356694. A321710 is the rooted version.

Extensions

Rows 10-11 from Andrei Zabolotskii, Jun 28 2025

A057009 Number of conjugacy classes of subgroups of index 3 in free group of rank n.

Original entry on oeis.org

1, 7, 41, 235, 1361, 7987, 47321, 281995, 1685921, 10096867, 60524201, 362972155, 2177309681, 13062280147, 78368930681, 470199300715, 2821152888641, 16926788453827, 101560343826761, 609360901747675, 3656161925798801, 21936961098633907, 131621735219132441
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Comments

Starting at a(2), consider that 2/3 - 1/2 = 1/6 with 1+6=7=a(2); 8/9 - 3/4 = 5/36 with 5+36=41=a(3); 26/27 - 7/8=19/216 with 19+216=235=a(4); 80/81 - 15/16=65/1296 with 65+1296=1361=a(5) and so forth. The numerators starting at a(3) are 5,19,65,211,665,2059,6305,... (see A001047) with 19 mod 5=4, 65 mod 19=8, 211 mod 65=16, 665 mod 211=32, 2059 mod 665=64, 6305 mod 2059=128, and so forth for higher powers of 2. - J. M. Bergot, May 09 2015
In other words, let f(n) = (3^(n-1)-1)/3^(n-1) - (2^(n-1)-1)/2^(n-1), then for n>=1 a(n) = numerator(f(n)) + denominator(f(n)). - Michel Marcus, May 29 2015

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Programs

  • Magma
    [6^(n-1)+3^(n-1)-2^(n-1): n in [1..30]] /* or */ I:=[1,7,41]; [n le 3 select I[n] else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 12 2015
  • Mathematica
    Table[6^(n-1)+3^(n-1)-2^(n-1),{n,25}] (* or *) LinearRecurrence[ {11,-36,36},{1,7,41},25] (* Harvey P. Dale, Nov 24 2011 *)
    CoefficientList[Series[(1 - 4 x)/((1 - 2 x) (1 - 3 x) (1 - 6 x)), {x, 0, 33}], x] (* Vincenzo Librandi, May 12 2015 *)
  • PARI
    a(n)=if(n<0,0,6^(n-1)+3^(n-1)-2^(n-1))
    

Formula

G.f.: x(1-4x)/((1-2x)(1-3x)(1-6x)). a(n) = 6^(n-1)+3^(n-1)-2^(n-1).
E.g.f.: e^(6*x)+e^(3*x)-e^(2*x). [Mohammad K. Azarian, Jan 16 2009]
a(1)=1, a(2)=7, a(3)=41, a(n) = 11*a(n-1)-36*a(n-2)+36*a(n-3). [Harvey P. Dale, Nov 24 2011]

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
Showing 1-10 of 13 results. Next