A279819
Coefficients in asymptotic expansion of sequence A110143.
Original entry on oeis.org
1, 0, 2, 5, 23, 106, 537, 3143, 20485, 143747, 1078660, 8680687, 74914773, 690204588, 6749661220, 69732043730, 758671016406, 8674112392913, 104037242257509, 1306629414101911, 17148719951169617, 234689253311285406, 3342159005325362828, 49430840838485256475
Offset: 0
A110143(n)/n! ~ 1 + 2/n^2 + 5/n^3 + 23/n^4 + 106/n^5 + 537/n^6 + ...
A057005
Number of conjugacy classes of subgroups of index n in free group of rank 2.
Original entry on oeis.org
1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, 35704007, 433460014, 5687955737, 80257406982, 1211781910755, 19496955286194, 333041104402877, 6019770408287089, 114794574818830735, 2303332664693034476, 48509766592893402121, 1069983257460254131272
Offset: 1
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.
- Alois P. Heinz, Table of n, a(n) for n = 1..450
- M. Deryagina, On the enumeration of hypermaps which are self-equivalent with respect to reversing the colors of vertices, Preprint 2016.
- J. B. Geloun and S. Ramgoolam, Counting Tensor Model Observables and Branched Covers of the 2-Sphere, arXiv preprint arXiv:1307.6490 [hep-th], 2013.
- Paawan Jethva, Exploring the Euler Characteristics of Dessins d'Enfants, Univ. Adelaide (Australia, 2023).
- G. A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc. (3) 37:2 (1978), 273-307.
- J. H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Th., 23 (1996), 105-109.
- J. H. Kwak and J. Lee, Enumeration of graph coverings and surface branched coverings, Lecture Note Series 1 (2001), Com^2MaC-KOSEF, Korea. See chapter 3.
- V. A. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta Applic. Math., 52 (1998), 91-120.
- Carlos I. Pérez-Sánchez, The full Ward-Takahashi Identity for colored tensor models, arXiv preprint arXiv:1608.08134 [math-ph], 2016.
- M. Planat, A. Giorgetti, F. Holweck, and M. Saniga, Quantum contextual finite geometries from dessins d'efants, arXiv:1310.4267 [quant-ph], 2013-2015.
- P. Vrana, On the algebra of local unitary invariants of pure and mixed quantum states, J. Phys A: Math. Theor. 44 (2011) 225304 doi:10.1088/1751-8113/44/22/225304, Table 2.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- L. Zapponi, What is a dessin d'enfant?, Notices AMS, 50:7, 2003, 788-789.
- Index entries for sequences related to groups
-
f[1] = {a[0] -> 0, a[1] -> 1};
f[max_] := f[max] = (p1 = Product[(1 - x^n)^(-a[n]), {n, 0, max}]; p2 = Product[Sum[j!*If[j == 0, 1, i^j]*x^(i*j), {j, 0, max}], {i, 0, max}];
s = Series[p1 - p2 /. f[max - 1], {x, 0, max}] // Normal // Expand;
sol = Thread[CoefficientList[s, x] == 0] // Solve // First;
Join[f[max - 1], sol]);
Array[a, 22] /. f[22] (* Jean-François Alcover, Mar 11 2014, updated Jan 01 2021 *)
More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
Original entry on oeis.org
1, 3, 8, 30, 133, 768, 5221, 41302, 369170, 3677058, 40338310, 483134179, 6271796072, 87709287104, 1314511438945, 21017751750506, 357102350816602, 6424883282375340, 122025874117476166, 2439726373093186274
Offset: 1
1 1 2 1 3 6 1 4 6 12 24 ... A036038
1 1 1 1 3 1 1 4 3 6 1 ... A036040
1 1 2 1 1 6 1 1 2 2 24 ... A096162
so a(n) begins 1 3 8 30 ... A096161
-
nmax = 25; Rest[CoefficientList[Series[Product[Sum[k!*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 10 2019 *)
m = 25; Rest[CoefficientList[Series[Product[-Gamma[0, -1/x^j] * Exp[-1/x^j], {j, 1, m}] / x^(m*(m + 1)/2), {x, 0, m}], x]] (* Vaclav Kotesovec, Dec 07 2020 *)
-
{ my(n=25); Vec(prod(k=1, n, O(x*x^n) + sum(r=0, n\k, x^(r*k)*r!))) }
A160449
Array read by antidiagonals: T(n,k) is the number of isomorphism classes of n-fold coverings of a connected graph with Betti number k (1 <= n, 0 <= k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 11, 8, 1, 1, 7, 43, 49, 16, 1, 1, 11, 161, 681, 251, 32, 1, 1, 15, 901, 14721, 14491, 1393, 64, 1, 1, 22, 5579, 524137, 1730861, 336465, 8051, 128, 1, 1, 30, 43206, 25471105, 373486525, 207388305, 7997683, 47449, 256, 1
Offset: 0
The array begins:
k=0 k=1 k=2 k=3 k=4 k=5
n=1 1 1 1 1 1 1
n=2 1 2 4 8 16 32
n=3 1 3 11 49 251 1393
n=4 1 5 43 681 14491 336465
n=5 1 7 161 14721 1730861 207388305
- Álvar Ibeas, Table of n, a(n) for n = 0..1829
- Michael W. Hero and Jeb F. Willenbring, Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Mathematics, 309 (2009), 6508-6514. See Table 3.
- J. H. Kwak and J. Lee, Isomorphism classes of graph bundles. Can. J. Math., 42(4), 1990, pp. 747-761.
- J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See Table 2.
Name clarified and more terms added by
Álvar Ibeas, Mar 25 2015
A110141
Triangle, read by rows, where row n lists the denominators of unit fraction coefficients of the products of {c_k}, in ascending order by indices of {c_k}, in the coefficient of x^n in exp(Sum_{k>=1} c_k/k*x^k).
Original entry on oeis.org
1, 1, 2, 2, 6, 2, 3, 24, 4, 3, 8, 4, 120, 12, 6, 8, 4, 6, 5, 720, 48, 18, 16, 8, 6, 5, 48, 8, 18, 6, 5040, 240, 72, 48, 24, 12, 10, 48, 8, 18, 6, 24, 10, 12, 7, 40320, 1440, 360, 192, 96, 36, 30, 96, 16, 36, 12, 24, 10, 12, 7, 384, 32, 36, 12, 15, 32, 8, 362880, 10080, 2160, 960
Offset: 0
Coefficients [x^n] exp(c1*x + (c2/2)*x^2 + (c3/3)*x^3 + ...) begin:
[x^0]: 1;
[x^1]: 1*c1;
[x^2]: (1/2)*c1^2 + (1/2)*c2;
[x^3]: (1/6)*c1^3 + (1/2)*c1*c2 + (1/3)*c3;
[x^4]: (1/24)*c1^4 + (1/4)*c1^2*c2 + (1/3)*c1*c3 + (1/8)*c2^2 + (1/4)*c4;
[x^5]: (1/120)*c1^5 + (1/12)*c1^3*c2 + (1/6)*c1^2*c3 + (1/8)*c1*c2^2 + (1/4)*c1*c4 + (1/6)*c2*c3 + (1/5)*c5;
[x^6]: (1/720)*c1^6 + (1/48)*c1^4*c2 + (1/18)*c1^3*c3 + (1/16)*c1^2*c2^2 + (1/8)*c1^2*c4 + (1/6)*c1*c2*c3 + (1/5)*c1*c5 + (1/48)*c2^3 + (1/8)*c2*c4 + (1/18)*c3^2 + (1/6)*c6;
forming this triangle of unit fraction coefficients:
1;
1;
2,2;
6,2,3;
24,4,3,8,4;
120,12,6,8,4,6,5;
720,48,18,16,8,6,5,48,8,18,6;
5040,240,72,48,24,12,10,48,8,18,6,24,10,12,7;
40320,1440,360,192,96,36,30,96,16,36,12,24,10,12,7,384,32,36,12,15,32,8;
362880,10080,2160,960,480,144,120,288,48,108,36,48,20,24,14,384,32,36,12,15,32,8,144,40,24,14,162,18,20,9; ...
- Macdonald, I. G. Symmetric functions and Hall polynomials. Oxford University Press, 1995. [From Vladimir Dotsenko, Apr 19 2009]
-
Table[n!/CoefficientRules[n! CycleIndex[SymmetricGroup[n], s]][[All, 2]], {n, 1, 8}] // Grid (* Geoffrey Critzer, Jan 18 2019 *)
A326985
G.f.: B(x)*B(2*x^2)*B(3*x^3)*..., where B(x) is g.f. of A000312.
Original entry on oeis.org
1, 1, 6, 32, 287, 3222, 47606, 831488, 16890792, 389286222, 10037183606, 286154919078, 8937624574652, 303483905672078, 11130904101218094, 438532313635906858, 18470060947222927499, 828155619735377936654, 39384843256547964375436, 1980138439071577626157382
Offset: 0
-
B:= proc(n) option remember; n^n end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1,
B(n), add(b(j, 1)*i^j*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 23 2019
-
nmax = 20; CoefficientList[Series[Product[1+Sum[k^k*j^k*x^(j*k), {k, 1, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]
A271708
Triangle read by rows, T(n,k) = Sum_{p in P(n,k)} Aut(p) where P(n,k) are the partitions of n with largest part k and Aut(p) = 1^j[1]*j[1]!*...*n^j[n]*j[n]! where j[m] is the number of parts in the partition p equal to m; for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 6, 2, 3, 0, 24, 12, 3, 4, 0, 120, 20, 12, 4, 5, 0, 720, 112, 42, 16, 5, 6, 0, 5040, 336, 126, 44, 20, 6, 7, 0, 40320, 2112, 492, 188, 55, 24, 7, 8, 0, 362880, 11712, 2802, 640, 215, 66, 28, 8, 9, 0, 3628800, 92160, 16938, 3624, 830, 258, 77, 32, 9, 10
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 2, 2]
[0, 6, 2, 3]
[0, 24, 12, 3, 4]
[0, 120, 20, 12, 4, 5]
[0, 720, 112, 42, 16, 5, 6]
[0, 5040, 336, 126, 44, 20, 6, 7]
[0, 40320, 2112, 492, 188, 55, 24, 7, 8]
-
def A271708(n,k):
P = Partitions(n, max_part=k, inner=[k])
return sum([p.aut() for p in P])
for n in (0..9): print([A271708(n,k) for k in (0..n)])
A309618
a(n) = Sum_{k=0..floor(n/2)} k! * 2^k * (n - 2*k)!.
Original entry on oeis.org
1, 1, 4, 8, 36, 140, 832, 5376, 42432, 374592, 3720960, 40694784, 486679296, 6310114560, 88168366080, 1320468480000, 21101183631360, 358354687426560, 6444941507297280, 122367252835860480, 2445878526994022400, 51337143210820239360, 1128918790687649955840
Offset: 0
-
Table[Sum[k!*2^k*(n-2*k)!, {k, 0, Floor[n/2]}], {n, 0, 25}]
nmax = 25; CoefficientList[Series[Sum[k!*x^k, {k, 0, nmax}] * Sum[k!*2^k*x^(2 k), {k, 0, nmax}], {x, 0, nmax}], x]
A327014
Number of orbits of Sym(n)^2 where Sym(n) acts by conjugation such that both permutations in a representative pair have the same cycle type.
Original entry on oeis.org
1, 1, 2, 5, 13, 35, 135, 613, 3624, 25230, 203640, 1842350, 18535683, 204650313
Offset: 0
For n = 2, representatives of the a(2) = 2 orbits are: (e,e), ((12), (12)), where e is identity.
A126787
G.f.: B(x)*B(2!*x^2)*B(3!*x^3)*..., where B(x) is g.f. of A000142.
Original entry on oeis.org
1, 1, 4, 14, 66, 308, 1888, 12240, 95640, 827904, 8106960, 87387264, 1035645312, 13316300928, 184988692800, 2756878875648, 43888205438208, 742943286892800, 13326434312808960, 252448071959572992, 5036116692383428608, 105523926692032447488
Offset: 0
-
B:= proc(n) option remember; local x; unapply(`if`(n<=0, 1, B(n-1)(x)+ n! *x^n), x) end: BB:= proc(n) local x, d; unapply(convert(series(mul(B(floor(n/d))(d!*x^d), d=1..n), x, n+1), polynom), x) end: a:= n-> coeff(BB(n)(x), x, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
add(b(n-i*j, i-1)*j!*i!^j, j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 02 2017
-
CoefficientList[Series[Product[Sum[x^(n*k) n!^k*k!, {k, 0, 20}], {n, 1, 20}], {x, 0, 20}], x] (* Geoffrey Critzer, Mar 21 2009 *)
Showing 1-10 of 18 results.
Comments