cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A279819 Coefficients in asymptotic expansion of sequence A110143.

Original entry on oeis.org

1, 0, 2, 5, 23, 106, 537, 3143, 20485, 143747, 1078660, 8680687, 74914773, 690204588, 6749661220, 69732043730, 758671016406, 8674112392913, 104037242257509, 1306629414101911, 17148719951169617, 234689253311285406, 3342159005325362828, 49430840838485256475
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2016

Keywords

Examples

			A110143(n)/n! ~ 1 + 2/n^2 + 5/n^3 + 23/n^4 + 106/n^5 + 537/n^6 + ...
		

Crossrefs

Cf. A110143.

A057005 Number of conjugacy classes of subgroups of index n in free group of rank 2.

Original entry on oeis.org

1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, 35704007, 433460014, 5687955737, 80257406982, 1211781910755, 19496955286194, 333041104402877, 6019770408287089, 114794574818830735, 2303332664693034476, 48509766592893402121, 1069983257460254131272
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Comments

Number of (unlabeled) dessins d'enfants with n edges. A dessin d'enfant ("child's drawing") by A. Grothendieck, 1984, is a connected bipartite multigraph with properly bicolored nodes (w and b) in which a cyclic order of the incident edges is assigned to every node. For n=2 these are w--b--w, b--w--b and w==b. - Valery A. Liskovets, Mar 17 2005
Also (apparently), a(n+1) = number of sensed hypermaps with n darts on a surface of any genus (see Walsh 2012). - N. J. A. Sloane, Aug 01 2012
Response from Timothy R. Walsh, Aug 01 2012: The conjecture in the previous comment is true. A combinatorial map is a connected graph, loops and multiple edges allowed, in which a cyclic order of the incident edge-ends is assigned to every node. The equivalence between combinatorial maps and topological maps was conjectured by several researchers and finally proved by Jones and Singerman. In my 1975 paper "Generating nonisomorphic maps without storing them", I established a genus-preserving bijection between hypermaps with n darts, w vertices and b edges and properly bicolored bipartite maps with n edges, w white vertices and b black vertices. A bipartite map can't have any loops; so a combinatorial bipartite map is a multigraph and it suffices to impose a cyclic order of the edges, rather than the edge-ends, incident to each node. Thus it is just the child's drawing described above by Liskovets.

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Cf. A057004-A057013. Inverse Euler transform of A110143.

Programs

  • Mathematica
    f[1] = {a[0] -> 0, a[1] -> 1};
    f[max_] := f[max] = (p1 = Product[(1 - x^n)^(-a[n]), {n, 0, max}]; p2 = Product[Sum[j!*If[j == 0, 1, i^j]*x^(i*j), {j, 0, max}], {i, 0, max}];
    s = Series[p1 - p2 /. f[max - 1], {x, 0, max}] // Normal // Expand;
    sol = Thread[CoefficientList[s, x] == 0] // Solve // First;
    Join[f[max - 1], sol]);
    Array[a, 22] /. f[22] (* Jean-François Alcover, Mar 11 2014, updated Jan 01 2021 *)

Formula

prod_{n>0} (1-x^n)^{-a(n)} = prod_{i>0} sum_{j>=0} j!*i^j*x^{i*j}. (Liskovets) - Valery A. Liskovets, Mar 17 2005 ... and both sides = sum_{j>=0} A110143(j)*x^j . - R. J. Mathar, Oct 18 2012
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for the coefficients see A113869. - Vaclav Kotesovec, Aug 09 2019

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A096161 Row sums for triangle A096162.

Original entry on oeis.org

1, 3, 8, 30, 133, 768, 5221, 41302, 369170, 3677058, 40338310, 483134179, 6271796072, 87709287104, 1314511438945, 21017751750506, 357102350816602, 6424883282375340, 122025874117476166, 2439726373093186274
Offset: 1

Views

Author

Alford Arnold, Jun 18 2004

Keywords

Comments

Also, partitions such that a set of k equal terms are labeled 1 through k and can appear in any order. For example, the partition 3+2+2+2+1+1+1+1 of 13 appears 1!*3!*4!=144 times because there are 1! ways to order the one "3," 3! ways to order the three "2"s, ... - Christian G. Bower, Jan 17 2006

Examples

			1 1 2 1 3 6 1 4 6 12 24 ... A036038
1 1 1 1 3 1 1 4 3 6 1 ... A036040
1 1 2 1 1 6 1 1 2 2 24 ... A096162
so a(n) begins 1 3 8 30 ... A096161
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; Rest[CoefficientList[Series[Product[Sum[k!*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 10 2019 *)
    m = 25; Rest[CoefficientList[Series[Product[-Gamma[0, -1/x^j] * Exp[-1/x^j], {j, 1, m}] / x^(m*(m + 1)/2), {x, 0, m}], x]] (* Vaclav Kotesovec, Dec 07 2020 *)
  • PARI
    { my(n=25); Vec(prod(k=1, n, O(x*x^n) + sum(r=0, n\k, x^(r*k)*r!))) }

Formula

G.f.: B(x)*B(x^2)*B(x^3)*... where B(x) is g.f. of A000142. - Christian G. Bower, Jan 17 2006
G.f.: Product_{k>0} Sum_{r>=0} x^(r*k)*r!. - Andrew Howroyd, Dec 22 2017
a(n) ~ n! * (1 + 1/n^2 + 2/n^3 + 7/n^4 + 28/n^5 + 121/n^6 + 587/n^7 + 3205/n^8 + 19201/n^9 + 123684/n^10 + ...), for coefficients see A293266. - Vaclav Kotesovec, Aug 10 2019

Extensions

More terms from Vladeta Jovovic, Jun 22 2004

A160449 Array read by antidiagonals: T(n,k) is the number of isomorphism classes of n-fold coverings of a connected graph with Betti number k (1 <= n, 0 <= k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 11, 8, 1, 1, 7, 43, 49, 16, 1, 1, 11, 161, 681, 251, 32, 1, 1, 15, 901, 14721, 14491, 1393, 64, 1, 1, 22, 5579, 524137, 1730861, 336465, 8051, 128, 1, 1, 30, 43206, 25471105, 373486525, 207388305, 7997683, 47449, 256, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Comments

T(n,k) is the number of orbits of the conjugacy action of Sym(n) on Sym(n)^k [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 25 2015

Examples

			The array begins:
      k=0   k=1   k=2   k=3     k=4       k=5
  n=1   1     1     1     1       1         1
  n=2   1     2     4     8      16        32
  n=3   1     3    11    49     251      1393
  n=4   1     5    43   681   14491    336465
  n=5   1     7   161 14721 1730861 207388305
		

Crossrefs

Programs

  • Sage
    def A160449(n, k):
        return sum(p.aut()**(k - 1) for p in Partitions(n))
    # Álvar Ibeas, Mar 25 2015

Extensions

Name clarified and more terms added by Álvar Ibeas, Mar 25 2015

A110141 Triangle, read by rows, where row n lists the denominators of unit fraction coefficients of the products of {c_k}, in ascending order by indices of {c_k}, in the coefficient of x^n in exp(Sum_{k>=1} c_k/k*x^k).

Original entry on oeis.org

1, 1, 2, 2, 6, 2, 3, 24, 4, 3, 8, 4, 120, 12, 6, 8, 4, 6, 5, 720, 48, 18, 16, 8, 6, 5, 48, 8, 18, 6, 5040, 240, 72, 48, 24, 12, 10, 48, 8, 18, 6, 24, 10, 12, 7, 40320, 1440, 360, 192, 96, 36, 30, 96, 16, 36, 12, 24, 10, 12, 7, 384, 32, 36, 12, 15, 32, 8, 362880, 10080, 2160, 960
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2005

Keywords

Comments

Row n starts with n!, after which the following pattern holds. When terms of row n are divided by a list of factorials, with (n-j-1)! repeated A002865(j+1) times in the list as j=1..n-1, the result is the initial terms of A110142. E.g., row 6 is: {720,48,18,16,8,6,5,48,8,18,6}; divide by respective factorials: {6!,4!,3!,2!,2!,1!,1!,0!,0!,0!,0!} with {4!,3!,2!,1!,0!} respectively occurring {1,1,2,2,4} times (A002865), yields the initial terms of A110142: {1,2,3,8,4,6,5,48,8,18,6}.
The term of the sequence corresponding to the product c_1^{n_1}c_2^{n_2}...c_k^{n_k} is equal to the number of elements in the centralizer of a permutation of n_1+2n_2+...+kn_k elements whose cycle type is 1^{n_1}2^{n_2}...k^{n^k}. (This fact is very standard, in particular, for the theory of symmetric functions.) - Vladimir Dotsenko, Apr 19 2009
Multiplying the values of row n by the corresponding values in row n of A102189, one obtains n!. - Jaimal Ichharam, Aug 06 2015
a(n,k) is the number of permutations in S_n that commute with a permutation having cycle type "k". Here, the cycle type of an n-permutation pi is the vector (i_1,...,i_n) where i_j is the number of cycles in pi of length j. These A000041(n) vectors can be ordered in reverse lexicographic order. The k-th cycle type is the k-th vector in this ordering. - Geoffrey Critzer, Jan 18 2019

Examples

			Coefficients [x^n] exp(c1*x + (c2/2)*x^2 + (c3/3)*x^3 + ...) begin:
[x^0]: 1;
[x^1]: 1*c1;
[x^2]: (1/2)*c1^2 + (1/2)*c2;
[x^3]: (1/6)*c1^3 + (1/2)*c1*c2 + (1/3)*c3;
[x^4]: (1/24)*c1^4 + (1/4)*c1^2*c2 + (1/3)*c1*c3 + (1/8)*c2^2 + (1/4)*c4;
[x^5]: (1/120)*c1^5 + (1/12)*c1^3*c2 + (1/6)*c1^2*c3 + (1/8)*c1*c2^2 + (1/4)*c1*c4 + (1/6)*c2*c3 + (1/5)*c5;
[x^6]: (1/720)*c1^6 + (1/48)*c1^4*c2 + (1/18)*c1^3*c3 + (1/16)*c1^2*c2^2 + (1/8)*c1^2*c4 + (1/6)*c1*c2*c3 + (1/5)*c1*c5 + (1/48)*c2^3 + (1/8)*c2*c4 + (1/18)*c3^2 + (1/6)*c6;
forming this triangle of unit fraction coefficients:
1;
1;
2,2;
6,2,3;
24,4,3,8,4;
120,12,6,8,4,6,5;
720,48,18,16,8,6,5,48,8,18,6;
5040,240,72,48,24,12,10,48,8,18,6,24,10,12,7;
40320,1440,360,192,96,36,30,96,16,36,12,24,10,12,7,384,32,36,12,15,32,8;
362880,10080,2160,960,480,144,120,288,48,108,36,48,20,24,14,384,32,36,12,15,32,8,144,40,24,14,162,18,20,9; ...
		

References

  • Macdonald, I. G. Symmetric functions and Hall polynomials. Oxford University Press, 1995. [From Vladimir Dotsenko, Apr 19 2009]

Crossrefs

Cf. A000041, A002865, A102189, A110142, A110143 (row sums).
First, second and third entries of each row are given (up to an offset) by A000142, A052849, and A052560 respectively. - Vladimir Dotsenko, Apr 19 2009

Programs

  • Mathematica
    Table[n!/CoefficientRules[n! CycleIndex[SymmetricGroup[n], s]][[All, 2]], {n, 1, 8}] // Grid (* Geoffrey Critzer, Jan 18 2019 *)

Formula

Number of terms in row n is A000041(n) (partition numbers). The unit fractions of each row sum to unity: Sum_{k=1..A000041(n)} 1/T(n, k) = 1.
a(n,k) = n!/A181897(n,k). - Geoffrey Critzer, Jan 18 2019

A326985 G.f.: B(x)*B(2*x^2)*B(3*x^3)*..., where B(x) is g.f. of A000312.

Original entry on oeis.org

1, 1, 6, 32, 287, 3222, 47606, 831488, 16890792, 389286222, 10037183606, 286154919078, 8937624574652, 303483905672078, 11130904101218094, 438532313635906858, 18470060947222927499, 828155619735377936654, 39384843256547964375436, 1980138439071577626157382
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 10 2019

Keywords

Crossrefs

Programs

  • Maple
    B:= proc(n) option remember; n^n end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1,
          B(n), add(b(j, 1)*i^j*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1+Sum[k^k*j^k*x^(j*k), {k, 1, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ n^n.

A271708 Triangle read by rows, T(n,k) = Sum_{p in P(n,k)} Aut(p) where P(n,k) are the partitions of n with largest part k and Aut(p) = 1^j[1]*j[1]!*...*n^j[n]*j[n]! where j[m] is the number of parts in the partition p equal to m; for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 6, 2, 3, 0, 24, 12, 3, 4, 0, 120, 20, 12, 4, 5, 0, 720, 112, 42, 16, 5, 6, 0, 5040, 336, 126, 44, 20, 6, 7, 0, 40320, 2112, 492, 188, 55, 24, 7, 8, 0, 362880, 11712, 2802, 640, 215, 66, 28, 8, 9, 0, 3628800, 92160, 16938, 3624, 830, 258, 77, 32, 9, 10
Offset: 0

Views

Author

Peter Luschny, Apr 17 2016

Keywords

Comments

Also T(n,k) = Sum_{p in P(n,k)} Cen(p) where Cen(p) is the size of the centralizer of any permutation of cycle type p.

Examples

			Triangle starts:
[1]
[0, 1]
[0, 2, 2]
[0, 6, 2, 3]
[0, 24, 12, 3, 4]
[0, 120, 20, 12, 4, 5]
[0, 720, 112, 42, 16, 5, 6]
[0, 5040, 336, 126, 44, 20, 6, 7]
[0, 40320, 2112, 492, 188, 55, 24, 7, 8]
		

Crossrefs

Cf. A110143 (row sums), A126074.

Programs

  • Sage
    def A271708(n,k):
        P = Partitions(n, max_part=k, inner=[k])
        return sum([p.aut() for p in P])
    for n in (0..9): print([A271708(n,k) for k in (0..n)])

A309618 a(n) = Sum_{k=0..floor(n/2)} k! * 2^k * (n - 2*k)!.

Original entry on oeis.org

1, 1, 4, 8, 36, 140, 832, 5376, 42432, 374592, 3720960, 40694784, 486679296, 6310114560, 88168366080, 1320468480000, 21101183631360, 358354687426560, 6444941507297280, 122367252835860480, 2445878526994022400, 51337143210820239360, 1128918790687649955840
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k!*2^k*(n-2*k)!, {k, 0, Floor[n/2]}], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[Sum[k!*x^k, {k, 0, nmax}] * Sum[k!*2^k*x^(2 k), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: B(x)*B(2*x^2), where B(x) is g.f. of A000142.
a(n) ~ n! * (1 + 2/n^2 + 2/n^3 + 10/n^4 + 50/n^5 + 250/n^6 + 1442/n^7 + 9514/n^8 + 68882/n^9 + 539098/n^10 + ...), for coefficients see A326983.

A327014 Number of orbits of Sym(n)^2 where Sym(n) acts by conjugation such that both permutations in a representative pair have the same cycle type.

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 135, 613, 3624, 25230, 203640, 1842350, 18535683, 204650313
Offset: 0

Views

Author

Derek Lim, Aug 13 2019

Keywords

Examples

			For n = 2, representatives of the a(2) = 2 orbits are: (e,e), ((12), (12)), where e is identity.
		

Crossrefs

A126787 G.f.: B(x)*B(2!*x^2)*B(3!*x^3)*..., where B(x) is g.f. of A000142.

Original entry on oeis.org

1, 1, 4, 14, 66, 308, 1888, 12240, 95640, 827904, 8106960, 87387264, 1035645312, 13316300928, 184988692800, 2756878875648, 43888205438208, 742943286892800, 13326434312808960, 252448071959572992, 5036116692383428608, 105523926692032447488
Offset: 0

Views

Author

Vladeta Jovovic, Feb 18 2007

Keywords

Comments

Take each Ferrers diagram of the partitions of n, label(linearly order) the dots within each row, then linearly order any of the rows that are of equal length. - Geoffrey Critzer, Mar 21 2009

Crossrefs

Programs

  • Maple
    B:= proc(n) option remember; local x; unapply(`if`(n<=0, 1, B(n-1)(x)+ n! *x^n), x) end: BB:= proc(n) local x, d; unapply(convert(series(mul(B(floor(n/d))(d!*x^d), d=1..n), x, n+1), polynom), x) end: a:= n-> coeff(BB(n)(x), x, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
          add(b(n-i*j, i-1)*j!*i!^j, j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    CoefficientList[Series[Product[Sum[x^(n*k) n!^k*k!, {k, 0, 20}], {n, 1, 20}], {x, 0, 20}], x] (* Geoffrey Critzer, Mar 21 2009 *)

Formula

a(n) ~ 2*n! * (1 + 1/(2*n) + 3/n^2 + 13/n^3 + 82/n^4 + 587/n^5 + 4966/n^6). - Vaclav Kotesovec, Mar 16 2015

Extensions

More terms from Alois P. Heinz, Sep 25 2008
Showing 1-10 of 18 results. Next