cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A110143 Row sums of triangle A110141.

Original entry on oeis.org

1, 1, 4, 11, 43, 161, 901, 5579, 43206, 378360, 3742738, 40853520, 488029621, 6323154547, 88308425755, 1322120265238, 21122364398761, 358647945023885, 6449299885654827, 122436442904193940, 2447046870232798369, 51358050784584629338, 1129314001779283063606
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2005

Keywords

Comments

Row n of triangle A110141 lists the denominators of unit fraction coefficients of the products of {c_k}, in ascending order by indices of {c_k}, in the coefficient of x^n in exp(Sum_{k>=1} c_k/k*x^k). There are A000041(n) terms in row n of triangle A110141.
Also, number of orbits of Sym(n)^2 where Sym_n acts by conjugation. Compare the MathOverflow discussion, also Bogaerts-Dukes 2014, and A241584, A241585. - Peter J. Dukes, May 12 2014
Number of isomorphism classes of n-fold coverings of a connected graph with circuit rank 2 [Kwak and Lee]. - Álvar Ibeas, Mar 25 2015

References

  • P. A. MacMahon, The expansion of determinants and permanents in terms of symmetric functions, in Proc. ICM Toronto (ed. J. C. Fields), Toronto University Press, 1924, vol 1, 319-330.
  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. Appears to contain this sequence in Table 2. [Added by N. J. A. Sloane, Nov 12 2009]

Crossrefs

Programs

  • Maple
    # Using a function from Alois P. Heinz in A279038:
    b:= proc(n, i) option remember; `if`(n=0, [1],
          `if`(i<1, [], [seq(map(x-> x*i^j*j!,
          b(n-i*j, i-1))[], j=0..n/i)]))
        end:
    seq(add(i, i=b(n$2)), n=0..22); # Peter Luschny, Dec 19 2016
  • Mathematica
    Table[Total[Apply[Times, Tally[#]/.{a_Integer,b_}->a^b b!]& /@ IntegerPartitions[n]],{n,0,21}] (* Wouter Meeussen, Oct 17 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Flatten[ Table[ Map[ #*i^j*j!&, b[n-i*j, i-1]], {j, 0, n/i}]]]]; Table[Sum[i, {i, b[n, n]}], {n, 0, 22}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
    nmax = 25; CoefficientList[Series[Product[Sum[k!*j^k*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 08 2019 *)
    m = 30; CoefficientList[Series[Product[-Gamma[0, -1/(x^j*j)] * Exp[-1/(x^j*j)], {j, 1, m}] / (x^(m*(m + 1)/2)*m!), {x, 0, m}], x] (* Vaclav Kotesovec, Dec 07 2020 *)
  • Sage
    def A110143(n):
        return sum(p.aut() for p in Partitions(n))
    [A110143(n) for n in range(9)]
    # Álvar Ibeas, Mar 26 2015

Formula

G.f.: B(x)*B(2*x^2)*B(3*x^3)*..., where B(x) is g.f. of A000142. - Vladeta Jovovic, Feb 18 2007
a(n) ~ n! * (1 + 2/n^2 + 5/n^3 + 23/n^4 + 106/n^5 + 537/n^6 + 3143/n^7 + 20485/n^8 + 143747/n^9 + 1078660/n^10), for coefficients see A279819. - Vaclav Kotesovec, Mar 16 2015

A074528 a(n) = 2^n + 3^n + 6^n.

Original entry on oeis.org

3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Comments

From Álvar Ibeas, Mar 24 2015: (Start)
Number of isomorphism classes of 3-fold coverings of a connected graph with circuit rank n+1 [Kwak and Lee].
Number of orbits of the conjugacy action of Sym(3) on Sym(3)^(n+1) [Kwak and Lee, 2001].
(End)

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. [Added by N. J. A. Sloane, Nov 12 2009]

Crossrefs

A246985 is essentially identical.
Third row of A160449, shifted.

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x)+1/(1-3*x)+1/(1-6*x).
E.g.f.: exp(2*x) + exp(3*x) + exp(6*x). (End)
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3). - Wesley Ivan Hurt, Aug 21 2020

A160450 Expansion of (1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)).

Original entry on oeis.org

1, 5, 43, 681, 14491, 336465, 7997683, 191374041, 4588603531, 110092229025, 2641942301923, 63404456863401, 1521689741669371, 36520416189619185, 876488888356983763, 21035724521756752761, 504857318142580028011, 12116575072428716250945, 290797797234516859979203, 6979147097598917713826121
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

Comments

Number of isomorphism classes of 4-fold coverings of a connected graph with Betti number n. [Kwak and Lee]
Number of orbits of the conjugacy action of Sym(4) on Sym(4)^n [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Fourth row of A160449.

Programs

  • Mathematica
    Table[3^(n - 1) + 2*4^(n - 1) + 8^(n - 1) + 24^(n - 1), {n, 0, 19}] (* Michael De Vlieger, Mar 24 2015 *)
    LinearRecurrence[{39,-428,1728,-2304},{1,5,43,681},20] (* Harvey P. Dale, Feb 06 2017 *)
  • PARI
    Vec((1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)) + O(x^30)) \\ Michel Marcus, Jan 14 2016

Formula

G.f.: (1-34*x+276*x^2-584*x^3)/((1-3*x)*(1-4*x)*(1-8*x)*(1-24*x)).
a(n) = 3^(n-1) + 2*4^(n-1) + 8^(n-1) + 24^(n-1). - Álvar Ibeas, Mar 24 2015

Extensions

Entry revised by N. J. A. Sloane, Sep 15 2014

A152612 Number of isomorphism classes of n-fold coverings of a connected graph with Betti number 3.

Original entry on oeis.org

1, 8, 49, 681, 14721, 524137, 25471105, 1628116890, 131789656610, 13174980291658, 1593894406662866, 229496526010111571, 38782290669508033003, 7600987633299112125995, 1710169549495739472301076, 437793904386312274903991653, 126520458075485848061740557461
Offset: 1

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Comments

Number of orbits of the conjugacy action of Sym(n) on Sym(n)^3 [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Euler transform of A057006.
Fourth column of A160449.

Programs

  • Mathematica
    A057006 = Import["https://oeis.org/A057006/b057006.txt", "Table"][[All, 2]];
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[DivisorSum[j, # p[#]&] b[n - j], {j, 1, n}]/n]; b];
    a = etr[A057006[[#]]&];
    Array[a, 15] (* Jean-François Alcover, Aug 29 2019 *)
  • Sage
    [sum(p.aut()**2 for p in Partitions(n)) for n in range(1,8)] # Álvar Ibeas, Mar 24 2015

Extensions

a(6) and a(7) from Geloun and Ramgoolan (2013) added by N. J. A. Sloane, Nov 21 2013
Name clarified and more terms added by Álvar Ibeas, Mar 24 2015

A160446 Number of isomorphism classes of n-fold coverings of a connected graph with Betti number 4.

Original entry on oeis.org

1, 16, 251, 14491, 1730861, 373486525, 128038522439, 65551419139302, 47785761199635528, 47785253957386480534, 63601854214623350663136, 109903723926415382728069729, 241458148813601665905147070195
Offset: 1

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Comments

Number of orbits of the conjugacy action of Sym(n) on Sym(n)^4 [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Fifth column of A160449.

Programs

  • Sage
    [sum(p.aut()**3 for p in Partitions(n)) for n in range(1,9)] # Álvar Ibeas, Mar 24 2015

Extensions

Name clarified and more terms added by Álvar Ibeas, Mar 24 2015

A160447 Number of isomorphism classes of n-fold coverings of a connected graph with Betti number 5.

Original entry on oeis.org

1, 1, 32, 1393, 336465, 207388305, 268749463729, 645244638648481, 2642912633259448386, 17340131659334061379490, 173401255467914281827442642, 2538767439061885080225425717858, 52643878634689290630033137748571475
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Comments

Number of orbits of the conjugacy action of Sym(n) on Sym(n)^5 [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Sixth column of A160449.

Programs

  • Sage
    [sum(p.aut()**4 for p in Partitions(n)) for n in range(6)] # Álvar Ibeas, Mar 24 2015

Extensions

Name clarified and more terms added by Álvar Ibeas, Mar 24 2015
a(0)=1 prepended by F. Chapoton, Mar 15 2020

A160448 Number of isomorphism classes of n-fold coverings of a connected graph with Betti number 6.

Original entry on oeis.org

1, 1, 64, 8051, 7997683, 24883501301, 193492277719861, 3252016862827895399, 106562068594917409814646, 6292383326091360022932428280, 629238325608681213686078435061358, 101339461229675874181303485938915652000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Comments

Number of orbits of the conjugacy action of Sym(n) on Sym(n)^6 [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Seventh column of A160449.

Programs

  • Sage
    [sum(p.aut()**5 for p in Partitions(n)) for n in range(6)] # Álvar Ibeas, Mar 24 2015

Extensions

Name clarified and more terms added by Álvar Ibeas, Mar 24 2015
a(0)=1 prepended by F. Chapoton, Mar 15 2020

A160454 Number of isomorphism classes of 5-fold coverings of a connected graph with Betti number n.

Original entry on oeis.org

1, 7, 161, 14721, 1730861, 207388305, 24883501301, 2985987361161, 358318118583341, 42998170050574305, 5159780357316368741, 619173642303122852601, 74300837069552376921821, 8916100448264989434407505, 1069932053790827570370392981
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

Comments

Number of orbits of the conjugacy action of Sym(5) on Sym(5)^n [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Fifth row of A160449.

Programs

  • Mathematica
    LinearRecurrence[{155,-4670,59440,-374304,1152000,-1382400},{1,7,161,14721,1730861,207388305},20] (* Harvey P. Dale, Apr 08 2016 *)
  • PARI
    Vec(-(249792*x^5-159200*x^4+36984*x^3-3746*x^2+148*x-1) / ((4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)*(12*x-1)*(120*x-1)) + O(x^100)) \\ Colin Barker, Mar 24 2015

Formula

a(n+1) = 4^n + 5^n + 2 * 6^n + 8^n + 12^n + 120^n. - Álvar Ibeas, Mar 24 2015
G.f.: -(249792*x^5-159200*x^4+36984*x^3-3746*x^2+148*x-1) / ((4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)*(12*x-1)*(120*x-1)). - Colin Barker, Mar 24 2015

Extensions

Name clarified and more terms added by Álvar Ibeas, Mar 24 2015

A176709 Number of isomorphism classes of 6-fold coverings of a connected graph with Betti number n.

Original entry on oeis.org

1, 11, 901, 524137, 373486525, 268749463729, 193492277719861, 139314094050615817, 100306131218514392365, 72220413687258533050849, 51998697816934668649790821, 37439062426374732606941352697, 26956124946902542404909380816605, 19408409961765641983297475951692369
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2010

Keywords

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Row 6 of A160449.

Extensions

Name edited, terms a(8) and beyond added by Andrey Zabolotskiy, Sep 02 2022

A246985 Expansion of (1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)).

Original entry on oeis.org

1, 3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251, 3656161927895953, 21936961102828211, 131621735227521049, 789730317205170251, 4738381620767930593
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2014

Keywords

Comments

From Álvar Ibeas, Mar 25 2015: (Start)
Number of isomorphism classes of 3-fold coverings of a connected graph with circuit rank n [Kwak and Lee].
Number of orbits of the conjugacy action of Sym(3) on Sym(3)^n [Kwak and Lee].
(End)

Crossrefs

Apart from first term, same as A074528. Third row of A160449.

Programs

  • Magma
    [n le 3 select 2*Factorial(n)-1 else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[2^(n - 1) + 3^(n - 1) + 6^(n - 1), {n, 0, 30}] (* Bruno Berselli, Mar 25 2015 *)
    LinearRecurrence[{11,-36,36},{1,3,11},30] (* Harvey P. Dale, Jan 17 2019 *)
  • PARI
    Vec((1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Jan 14 2016

Formula

G.f.: (1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)).
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3) for n>2. [Bruno Berselli, Mar 25 2015]
a(n) = 2^(n-1) + 3^(n-1) + 6^(n-1). - Álvar Ibeas, Mar 25 2015

Extensions

Signature corrected and Ibeas formula adapted to the offset by Bruno Berselli, Mar 25 2015
Showing 1-10 of 10 results.