cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A125706 Numbers k such that 6^k + 3^k + 2^k = A074528(k) is a prime.

Original entry on oeis.org

0, 1, 3, 9, 13, 25, 27, 29, 95, 107, 153, 159, 675, 1633, 1693, 2337, 25998, 64289
Offset: 1

Views

Author

Alexander Adamchuk, Jan 31 2007

Keywords

Comments

Corresponding primes of the form 6^k + 3^k + 2^k are {3, 11, 251, 10097891, 13062296531, 28430288877251865251, 1023490376703200952251, 36845653355419807219091, 84017312692910353150294530243640676594723260464784043666542128557055486251, ...}.

Crossrefs

Cf. A074528.

Programs

  • Mathematica
    Do[f=6^n+3^n+2^n;If[PrimeQ[f],Print[{n,f}]],{n,1,675}]

Extensions

More terms from Ryan Propper, Mar 30 2007
a(18) from Michael S. Branicky, Jul 28 2024

A291556 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) = (n!)^k * Sum_{i=1..n} 1/i^k.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 5, 11, 4, 0, 1, 9, 49, 50, 5, 0, 1, 17, 251, 820, 274, 6, 0, 1, 33, 1393, 16280, 21076, 1764, 7, 0, 1, 65, 8051, 357904, 2048824, 773136, 13068, 8, 0, 1, 129, 47449, 8252000, 224021776, 444273984, 38402064, 109584, 9
Offset: 0

Views

Author

Seiichi Manyama, Aug 26 2017

Keywords

Examples

			Square array begins:
   0,  0,   0,     0,      0, ...
   1,  1,   1,     1,      1, ...
   2,  3,   5,     9,     17, ...
   3, 11,  49,   251,   1393, ...
   4, 50, 820, 16280, 357904, ...
		

Crossrefs

Rows n=0-3 give: A000004, A000012, A000051, A074528.
Main diagonal gives A060943.

Programs

  • Maple
    A:= (n, k)-> n!^k * add(1/i^k, i=1..n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Aug 26 2017
  • Mathematica
    A[0, ] = 0; A[1, ] = 1; A[n_, k_] := A[n, k] = ((n-1)^k + n^k) A[n-1, k] - (n-1)^(2k) A[n-2, k];
    Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 11 2019 *)

Formula

A(0, k) = 0, A(1, k) = 1, A(n+1, k) = (n^k+(n+1)^k)*A(n, k) - n^(2*k)*A(n-1, k).

A160449 Array read by antidiagonals: T(n,k) is the number of isomorphism classes of n-fold coverings of a connected graph with Betti number k (1 <= n, 0 <= k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 11, 8, 1, 1, 7, 43, 49, 16, 1, 1, 11, 161, 681, 251, 32, 1, 1, 15, 901, 14721, 14491, 1393, 64, 1, 1, 22, 5579, 524137, 1730861, 336465, 8051, 128, 1, 1, 30, 43206, 25471105, 373486525, 207388305, 7997683, 47449, 256, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Comments

T(n,k) is the number of orbits of the conjugacy action of Sym(n) on Sym(n)^k [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 25 2015

Examples

			The array begins:
      k=0   k=1   k=2   k=3     k=4       k=5
  n=1   1     1     1     1       1         1
  n=2   1     2     4     8      16        32
  n=3   1     3    11    49     251      1393
  n=4   1     5    43   681   14491    336465
  n=5   1     7   161 14721 1730861 207388305
		

Crossrefs

Programs

  • Sage
    def A160449(n, k):
        return sum(p.aut()**(k - 1) for p in Partitions(n))
    # Álvar Ibeas, Mar 25 2015

Extensions

Name clarified and more terms added by Álvar Ibeas, Mar 25 2015

A246985 Expansion of (1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)).

Original entry on oeis.org

1, 3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251, 3656161927895953, 21936961102828211, 131621735227521049, 789730317205170251, 4738381620767930593
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2014

Keywords

Comments

From Álvar Ibeas, Mar 25 2015: (Start)
Number of isomorphism classes of 3-fold coverings of a connected graph with circuit rank n [Kwak and Lee].
Number of orbits of the conjugacy action of Sym(3) on Sym(3)^n [Kwak and Lee].
(End)

Crossrefs

Apart from first term, same as A074528. Third row of A160449.

Programs

  • Magma
    [n le 3 select 2*Factorial(n)-1 else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[2^(n - 1) + 3^(n - 1) + 6^(n - 1), {n, 0, 30}] (* Bruno Berselli, Mar 25 2015 *)
    LinearRecurrence[{11,-36,36},{1,3,11},30] (* Harvey P. Dale, Jan 17 2019 *)
  • PARI
    Vec((1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Jan 14 2016

Formula

G.f.: (1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)).
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3) for n>2. [Bruno Berselli, Mar 25 2015]
a(n) = 2^(n-1) + 3^(n-1) + 6^(n-1). - Álvar Ibeas, Mar 25 2015

Extensions

Signature corrected and Ibeas formula adapted to the offset by Bruno Berselli, Mar 25 2015
Showing 1-4 of 4 results.