A074528 a(n) = 2^n + 3^n + 6^n.
3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251
Offset: 0
References
- J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. [Added by N. J. A. Sloane, Nov 12 2009]
Links
- Hakan Icoz, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- M. W. Hero and J. F. Willenbring, Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Math., 309 (2010), 6508-6514.
- J. H. Kwak and J. Lee, Isomorphism classes of graph bundles. Can. J. Math., 42(4), 1990, pp. 747-761.
- Index entries for linear recurrences with constant coefficients, signature (11,-36,36).
Crossrefs
Programs
-
Magma
[2^n + 3^n + 6^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
-
Mathematica
Table[2^n + 3^n + 6^n, {n, 0, 20}] LinearRecurrence[{11,-36,36},{3,11,49},30] (* Harvey P. Dale, May 02 2016 *)
-
PARI
a(n)=2^n+3^n+6^n \\ Charles R Greathouse IV, Oct 07 2015
Formula
From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x)+1/(1-3*x)+1/(1-6*x).
E.g.f.: exp(2*x) + exp(3*x) + exp(6*x). (End)
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3). - Wesley Ivan Hurt, Aug 21 2020
Comments