A349216 Number of ternary triples (u,v,w) with 1 <= u < v < w <= n.
0, 0, 1, 2, 4, 8, 13, 20, 30, 40, 53, 70, 88, 110, 137, 166, 200, 240, 281, 328, 382, 438, 501, 572, 646, 728, 819, 910, 1010, 1120, 1233, 1356, 1490, 1628, 1777, 1938, 2100, 2274, 2461, 2652, 2856, 3074, 3297, 3534, 3786, 4040, 4309, 4594, 4884, 5190, 5513, 5842, 6188, 6552, 6917
Offset: 1
Examples
For n = 7 the 13 ternary triples are (1, 2, 3), (2, 3, 4), (1, 3, 5), (3, 4, 5), (1, 2, 6), (2, 4, 6), (1, 5, 6), (4, 5, 6), (2, 3, 7), (1, 4, 7), (3, 5, 7), (2, 6, 7), (5, 6, 7).
Links
- Coen del Valle and Peter J. Dukes, Balancing permuted copies of multigraphs and integer matrices, arXiv:2201.00897 [math.CO], 2022.
Programs
-
Mathematica
Array[Sum[Sum[Sum[Boole[IntegerExponent[w + w - u - v, 3] > IntegerExponent[GCD[w - u, w - v], 3]], {u, (v - 1)}], {v, 2, (w - 1)}], {w, 3, #}] &, 55] (* Michael De Vlieger, Feb 15 2022 *)
-
PARI
A349216(n) = sum(w=3,n,sum(v=2,(w-1),sum(u=1,(v-1),valuation(w+w-u-v,3) > valuation(gcd(w-u,w-v),3)))); \\ Antti Karttunen, Nov 13 2021
-
SageMath
def a(n): t=3^ceil(log(n,3)) counter=0 for w in range(n): for v in range(w): for u in range(v): if min(gcd(w-u,3^t),gcd(w-v,3^t))
Comments