cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A160871 Column 6 of array in A057004.

Original entry on oeis.org

1, 63, 7987, 7987616, 24875000437, 193466859054994
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2009

Keywords

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

A057005 Number of conjugacy classes of subgroups of index n in free group of rank 2.

Original entry on oeis.org

1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, 35704007, 433460014, 5687955737, 80257406982, 1211781910755, 19496955286194, 333041104402877, 6019770408287089, 114794574818830735, 2303332664693034476, 48509766592893402121, 1069983257460254131272
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Comments

Number of (unlabeled) dessins d'enfants with n edges. A dessin d'enfant ("child's drawing") by A. Grothendieck, 1984, is a connected bipartite multigraph with properly bicolored nodes (w and b) in which a cyclic order of the incident edges is assigned to every node. For n=2 these are w--b--w, b--w--b and w==b. - Valery A. Liskovets, Mar 17 2005
Also (apparently), a(n+1) = number of sensed hypermaps with n darts on a surface of any genus (see Walsh 2012). - N. J. A. Sloane, Aug 01 2012
Response from Timothy R. Walsh, Aug 01 2012: The conjecture in the previous comment is true. A combinatorial map is a connected graph, loops and multiple edges allowed, in which a cyclic order of the incident edge-ends is assigned to every node. The equivalence between combinatorial maps and topological maps was conjectured by several researchers and finally proved by Jones and Singerman. In my 1975 paper "Generating nonisomorphic maps without storing them", I established a genus-preserving bijection between hypermaps with n darts, w vertices and b edges and properly bicolored bipartite maps with n edges, w white vertices and b black vertices. A bipartite map can't have any loops; so a combinatorial bipartite map is a multigraph and it suffices to impose a cyclic order of the edges, rather than the edge-ends, incident to each node. Thus it is just the child's drawing described above by Liskovets.

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Cf. A057004-A057013. Inverse Euler transform of A110143.

Programs

  • Mathematica
    f[1] = {a[0] -> 0, a[1] -> 1};
    f[max_] := f[max] = (p1 = Product[(1 - x^n)^(-a[n]), {n, 0, max}]; p2 = Product[Sum[j!*If[j == 0, 1, i^j]*x^(i*j), {j, 0, max}], {i, 0, max}];
    s = Series[p1 - p2 /. f[max - 1], {x, 0, max}] // Normal // Expand;
    sol = Thread[CoefficientList[s, x] == 0] // Solve // First;
    Join[f[max - 1], sol]);
    Array[a, 22] /. f[22] (* Jean-François Alcover, Mar 11 2014, updated Jan 01 2021 *)

Formula

prod_{n>0} (1-x^n)^{-a(n)} = prod_{i>0} sum_{j>=0} j!*i^j*x^{i*j}. (Liskovets) - Valery A. Liskovets, Mar 17 2005 ... and both sides = sum_{j>=0} A110143(j)*x^j . - R. J. Mathar, Oct 18 2012
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for the coefficients see A113869. - Vaclav Kotesovec, Aug 09 2019

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A160449 Array read by antidiagonals: T(n,k) is the number of isomorphism classes of n-fold coverings of a connected graph with Betti number k (1 <= n, 0 <= k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 11, 8, 1, 1, 7, 43, 49, 16, 1, 1, 11, 161, 681, 251, 32, 1, 1, 15, 901, 14721, 14491, 1393, 64, 1, 1, 22, 5579, 524137, 1730861, 336465, 8051, 128, 1, 1, 30, 43206, 25471105, 373486525, 207388305, 7997683, 47449, 256, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Comments

T(n,k) is the number of orbits of the conjugacy action of Sym(n) on Sym(n)^k [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 25 2015

Examples

			The array begins:
      k=0   k=1   k=2   k=3     k=4       k=5
  n=1   1     1     1     1       1         1
  n=2   1     2     4     8      16        32
  n=3   1     3    11    49     251      1393
  n=4   1     5    43   681   14491    336465
  n=5   1     7   161 14721 1730861 207388305
		

Crossrefs

Programs

  • Sage
    def A160449(n, k):
        return sum(p.aut()**(k - 1) for p in Partitions(n))
    # Álvar Ibeas, Mar 25 2015

Extensions

Name clarified and more terms added by Álvar Ibeas, Mar 25 2015

A057013 Number of conjugacy classes of subgroups of index n in free group of rank n.

Original entry on oeis.org

1, 3, 41, 14120, 207009649, 193466859054994, 16390021452000128467345, 173238117954686651535535048940928, 300679800156605267097630253972085058107938561
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057006 Number of conjugacy classes of subgroups of index n in free group of rank 3.

Original entry on oeis.org

1, 7, 41, 604, 13753, 504243, 24824785, 1598346352, 129958211233, 13030565312011, 1579721338432537, 227804599861102676, 38541084552054952009, 7560534755192908672087, 1702288146755359962223409
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Cf. A057004-A057013. Inverse Euler transform of A152612.

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057007 Number of conjugacy classes of subgroups of index n in free group of rank 4.

Original entry on oeis.org

1, 15, 235, 14120, 1712845, 371515454, 127635996839, 65417303558808, 47718183491375681, 47736450176936606373, 63553335359217380046467, 109839393591932655104274298, 241347279732331127743077516005
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Cf. A057004-A057013. Inverse Euler transform of A160446.

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057012 Number of conjugacy classes of subgroups of index 6 in free group of rank n.

Original entry on oeis.org

1, 624, 504243, 371515454, 268530771271, 193466859054994, 139311082645798043, 100305771690618678654, 72220370631411094037391, 51998692654400641678907114, 37439061807069469917891862243
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,n--;720^n-120^n+24^n+18^n-16^n+12^n*2-36^n/2-9^n/2+8^n*2/3-6^n/2-4^n*3/2-3^n/2+2^n*5/6)

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057008 Number of conjugacy classes of subgroups of index n in free group of rank 5.

Original entry on oeis.org

1, 31, 1361, 334576, 207009649, 268530771271, 644969015852641, 2642258726261312896, 17337468317813249073281, 173383832437017181584973783, 2538593496477071922439308897841, 52641334467700181691498204296713016, 1503509056221581488501100896035227575441
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Inverse Euler transform of A160447.

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057010 Number of conjugacy classes of subgroups of index 4 in free group of rank n.

Original entry on oeis.org

1, 26, 604, 14120, 334576, 7987616, 191318464, 4588288640, 110090411776, 2641931680256, 63404394241024, 1521689370306560, 36520413978750976, 876488875160477696, 21035724442850934784, 504857317670233210880
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,24^(n-1)+8^(n-1)-6^(n-1))

Formula

G.f.: x(1-12x)/((1-6x)(1-8x)(1-24x)).
a(n) = 24^(n-1)+8^(n-1)-6^(n-1).

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057011 Number of conjugacy classes of subgroups of index 5 in free group of rank n.

Original entry on oeis.org

1, 97, 13753, 1712845, 207009649, 24875000437, 2985789977353, 358313458071085, 42998059096839649, 5159777705044971877, 619173578774772949753, 74300835546376264277725
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,n--;120^n-24^n-12^n+6^n+5^n+4^n-2^n)

Formula

G.f.: x(1-76x+4336x^2-81504x^3+522720x^4-1064448x^5)/((1-2x)(1-4x)(1-5x)(1-6x)(1-12x)(1-24x)(1-120x)).
a(n) = 120^(n-1)-24^(n-1)-12^(n-1)+6^(n-1)+5^(n-1)+4^(n-1)-2^(n-1).

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
Showing 1-10 of 11 results. Next