A057013
Number of conjugacy classes of subgroups of index n in free group of rank n.
Original entry on oeis.org
1, 3, 41, 14120, 207009649, 193466859054994, 16390021452000128467345, 173238117954686651535535048940928, 300679800156605267097630253972085058107938561
Offset: 1
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.
- J. H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Th., 23 (1996), 105-109.
- J. H. Kwak and J. Lee, Enumeration of graph coverings and surface branched coverings, Lecture Note Series 1 (2001), Com^2MaC-KOSEF, Korea. See chapter 3.
- V. A. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta Applic. Math., 52 (1998), 91-120.
- Index entries for sequences related to groups
More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
A057009
Number of conjugacy classes of subgroups of index 3 in free group of rank n.
Original entry on oeis.org
1, 7, 41, 235, 1361, 7987, 47321, 281995, 1685921, 10096867, 60524201, 362972155, 2177309681, 13062280147, 78368930681, 470199300715, 2821152888641, 16926788453827, 101560343826761, 609360901747675, 3656161925798801, 21936961098633907, 131621735219132441
Offset: 1
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.
- J. H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Th., 23 (1996), 105-109.
- J. H. Kwak and J. Lee, Enumeration of graph coverings and surface branched coverings, Lecture Note Series 1 (2001), Com^2MaC-KOSEF, Korea. See chapter 3.
- V. A. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta Applic. Math., 52 (1998), 91-120.
- Index entries for linear recurrences with constant coefficients, signature (11,-36,36).
-
[6^(n-1)+3^(n-1)-2^(n-1): n in [1..30]] /* or */ I:=[1,7,41]; [n le 3 select I[n] else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 12 2015
-
Table[6^(n-1)+3^(n-1)-2^(n-1),{n,25}] (* or *) LinearRecurrence[ {11,-36,36},{1,7,41},25] (* Harvey P. Dale, Nov 24 2011 *)
CoefficientList[Series[(1 - 4 x)/((1 - 2 x) (1 - 3 x) (1 - 6 x)), {x, 0, 33}], x] (* Vincenzo Librandi, May 12 2015 *)
-
a(n)=if(n<0,0,6^(n-1)+3^(n-1)-2^(n-1))
More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
Showing 1-2 of 2 results.
Comments