cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A057005 Number of conjugacy classes of subgroups of index n in free group of rank 2.

Original entry on oeis.org

1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, 35704007, 433460014, 5687955737, 80257406982, 1211781910755, 19496955286194, 333041104402877, 6019770408287089, 114794574818830735, 2303332664693034476, 48509766592893402121, 1069983257460254131272
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Comments

Number of (unlabeled) dessins d'enfants with n edges. A dessin d'enfant ("child's drawing") by A. Grothendieck, 1984, is a connected bipartite multigraph with properly bicolored nodes (w and b) in which a cyclic order of the incident edges is assigned to every node. For n=2 these are w--b--w, b--w--b and w==b. - Valery A. Liskovets, Mar 17 2005
Also (apparently), a(n+1) = number of sensed hypermaps with n darts on a surface of any genus (see Walsh 2012). - N. J. A. Sloane, Aug 01 2012
Response from Timothy R. Walsh, Aug 01 2012: The conjecture in the previous comment is true. A combinatorial map is a connected graph, loops and multiple edges allowed, in which a cyclic order of the incident edge-ends is assigned to every node. The equivalence between combinatorial maps and topological maps was conjectured by several researchers and finally proved by Jones and Singerman. In my 1975 paper "Generating nonisomorphic maps without storing them", I established a genus-preserving bijection between hypermaps with n darts, w vertices and b edges and properly bicolored bipartite maps with n edges, w white vertices and b black vertices. A bipartite map can't have any loops; so a combinatorial bipartite map is a multigraph and it suffices to impose a cyclic order of the edges, rather than the edge-ends, incident to each node. Thus it is just the child's drawing described above by Liskovets.

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Cf. A057004-A057013. Inverse Euler transform of A110143.

Programs

  • Mathematica
    f[1] = {a[0] -> 0, a[1] -> 1};
    f[max_] := f[max] = (p1 = Product[(1 - x^n)^(-a[n]), {n, 0, max}]; p2 = Product[Sum[j!*If[j == 0, 1, i^j]*x^(i*j), {j, 0, max}], {i, 0, max}];
    s = Series[p1 - p2 /. f[max - 1], {x, 0, max}] // Normal // Expand;
    sol = Thread[CoefficientList[s, x] == 0] // Solve // First;
    Join[f[max - 1], sol]);
    Array[a, 22] /. f[22] (* Jean-François Alcover, Mar 11 2014, updated Jan 01 2021 *)

Formula

prod_{n>0} (1-x^n)^{-a(n)} = prod_{i>0} sum_{j>=0} j!*i^j*x^{i*j}. (Liskovets) - Valery A. Liskovets, Mar 17 2005 ... and both sides = sum_{j>=0} A110143(j)*x^j . - R. J. Mathar, Oct 18 2012
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for the coefficients see A113869. - Vaclav Kotesovec, Aug 09 2019

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057004 Array T(n,k) = number of conjugacy classes of subgroups of index k in free group of rank n, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 41, 26, 1, 1, 31, 235, 604, 97, 1, 1, 63, 1361, 14120, 13753, 624, 1, 1, 127, 7987, 334576, 1712845, 504243, 4163, 1, 1, 255, 47321, 7987616, 207009649, 371515454, 24824785, 34470, 1, 1, 511, 281995, 191318464
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Examples

			Array T(n,k) begins:
1 1 1 1 1 1 1 ...
1 3 7 26 97 624 4163 ...
1 7 41 604 13753 504243 ...
1 15 235 14120 1712845 ...
		

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Rows, columns, main diagonal give A057005-A057013, A160871.

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057006 Number of conjugacy classes of subgroups of index n in free group of rank 3.

Original entry on oeis.org

1, 7, 41, 604, 13753, 504243, 24824785, 1598346352, 129958211233, 13030565312011, 1579721338432537, 227804599861102676, 38541084552054952009, 7560534755192908672087, 1702288146755359962223409
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Cf. A057004-A057013. Inverse Euler transform of A152612.

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057007 Number of conjugacy classes of subgroups of index n in free group of rank 4.

Original entry on oeis.org

1, 15, 235, 14120, 1712845, 371515454, 127635996839, 65417303558808, 47718183491375681, 47736450176936606373, 63553335359217380046467, 109839393591932655104274298, 241347279732331127743077516005
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Cf. A057004-A057013. Inverse Euler transform of A160446.

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057012 Number of conjugacy classes of subgroups of index 6 in free group of rank n.

Original entry on oeis.org

1, 624, 504243, 371515454, 268530771271, 193466859054994, 139311082645798043, 100305771690618678654, 72220370631411094037391, 51998692654400641678907114, 37439061807069469917891862243
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,n--;720^n-120^n+24^n+18^n-16^n+12^n*2-36^n/2-9^n/2+8^n*2/3-6^n/2-4^n*3/2-3^n/2+2^n*5/6)

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057008 Number of conjugacy classes of subgroups of index n in free group of rank 5.

Original entry on oeis.org

1, 31, 1361, 334576, 207009649, 268530771271, 644969015852641, 2642258726261312896, 17337468317813249073281, 173383832437017181584973783, 2538593496477071922439308897841, 52641334467700181691498204296713016, 1503509056221581488501100896035227575441
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Inverse Euler transform of A160447.

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057010 Number of conjugacy classes of subgroups of index 4 in free group of rank n.

Original entry on oeis.org

1, 26, 604, 14120, 334576, 7987616, 191318464, 4588288640, 110090411776, 2641931680256, 63404394241024, 1521689370306560, 36520413978750976, 876488875160477696, 21035724442850934784, 504857317670233210880
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,24^(n-1)+8^(n-1)-6^(n-1))

Formula

G.f.: x(1-12x)/((1-6x)(1-8x)(1-24x)).
a(n) = 24^(n-1)+8^(n-1)-6^(n-1).

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057011 Number of conjugacy classes of subgroups of index 5 in free group of rank n.

Original entry on oeis.org

1, 97, 13753, 1712845, 207009649, 24875000437, 2985789977353, 358313458071085, 42998059096839649, 5159777705044971877, 619173578774772949753, 74300835546376264277725
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,n--;120^n-24^n-12^n+6^n+5^n+4^n-2^n)

Formula

G.f.: x(1-76x+4336x^2-81504x^3+522720x^4-1064448x^5)/((1-2x)(1-4x)(1-5x)(1-6x)(1-12x)(1-24x)(1-120x)).
a(n) = 120^(n-1)-24^(n-1)-12^(n-1)+6^(n-1)+5^(n-1)+4^(n-1)-2^(n-1).

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A057009 Number of conjugacy classes of subgroups of index 3 in free group of rank n.

Original entry on oeis.org

1, 7, 41, 235, 1361, 7987, 47321, 281995, 1685921, 10096867, 60524201, 362972155, 2177309681, 13062280147, 78368930681, 470199300715, 2821152888641, 16926788453827, 101560343826761, 609360901747675, 3656161925798801, 21936961098633907, 131621735219132441
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Comments

Starting at a(2), consider that 2/3 - 1/2 = 1/6 with 1+6=7=a(2); 8/9 - 3/4 = 5/36 with 5+36=41=a(3); 26/27 - 7/8=19/216 with 19+216=235=a(4); 80/81 - 15/16=65/1296 with 65+1296=1361=a(5) and so forth. The numerators starting at a(3) are 5,19,65,211,665,2059,6305,... (see A001047) with 19 mod 5=4, 65 mod 19=8, 211 mod 65=16, 665 mod 211=32, 2059 mod 665=64, 6305 mod 2059=128, and so forth for higher powers of 2. - J. M. Bergot, May 09 2015
In other words, let f(n) = (3^(n-1)-1)/3^(n-1) - (2^(n-1)-1)/2^(n-1), then for n>=1 a(n) = numerator(f(n)) + denominator(f(n)). - Michel Marcus, May 29 2015

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Programs

  • Magma
    [6^(n-1)+3^(n-1)-2^(n-1): n in [1..30]] /* or */ I:=[1,7,41]; [n le 3 select I[n] else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 12 2015
  • Mathematica
    Table[6^(n-1)+3^(n-1)-2^(n-1),{n,25}] (* or *) LinearRecurrence[ {11,-36,36},{1,7,41},25] (* Harvey P. Dale, Nov 24 2011 *)
    CoefficientList[Series[(1 - 4 x)/((1 - 2 x) (1 - 3 x) (1 - 6 x)), {x, 0, 33}], x] (* Vincenzo Librandi, May 12 2015 *)
  • PARI
    a(n)=if(n<0,0,6^(n-1)+3^(n-1)-2^(n-1))
    

Formula

G.f.: x(1-4x)/((1-2x)(1-3x)(1-6x)). a(n) = 6^(n-1)+3^(n-1)-2^(n-1).
E.g.f.: e^(6*x)+e^(3*x)-e^(2*x). [Mohammad K. Azarian, Jan 16 2009]
a(1)=1, a(2)=7, a(3)=41, a(n) = 11*a(n-1)-36*a(n-2)+36*a(n-3). [Harvey P. Dale, Nov 24 2011]

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
Showing 1-9 of 9 results.