cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A152612 Number of isomorphism classes of n-fold coverings of a connected graph with Betti number 3.

Original entry on oeis.org

1, 8, 49, 681, 14721, 524137, 25471105, 1628116890, 131789656610, 13174980291658, 1593894406662866, 229496526010111571, 38782290669508033003, 7600987633299112125995, 1710169549495739472301076, 437793904386312274903991653, 126520458075485848061740557461
Offset: 1

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Comments

Number of orbits of the conjugacy action of Sym(n) on Sym(n)^3 [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

Crossrefs

Euler transform of A057006.
Fourth column of A160449.

Programs

  • Mathematica
    A057006 = Import["https://oeis.org/A057006/b057006.txt", "Table"][[All, 2]];
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[DivisorSum[j, # p[#]&] b[n - j], {j, 1, n}]/n]; b];
    a = etr[A057006[[#]]&];
    Array[a, 15] (* Jean-François Alcover, Aug 29 2019 *)
  • Sage
    [sum(p.aut()**2 for p in Partitions(n)) for n in range(1,8)] # Álvar Ibeas, Mar 24 2015

Extensions

a(6) and a(7) from Geloun and Ramgoolan (2013) added by N. J. A. Sloane, Nov 21 2013
Name clarified and more terms added by Álvar Ibeas, Mar 24 2015

A057009 Number of conjugacy classes of subgroups of index 3 in free group of rank n.

Original entry on oeis.org

1, 7, 41, 235, 1361, 7987, 47321, 281995, 1685921, 10096867, 60524201, 362972155, 2177309681, 13062280147, 78368930681, 470199300715, 2821152888641, 16926788453827, 101560343826761, 609360901747675, 3656161925798801, 21936961098633907, 131621735219132441
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Comments

Starting at a(2), consider that 2/3 - 1/2 = 1/6 with 1+6=7=a(2); 8/9 - 3/4 = 5/36 with 5+36=41=a(3); 26/27 - 7/8=19/216 with 19+216=235=a(4); 80/81 - 15/16=65/1296 with 65+1296=1361=a(5) and so forth. The numerators starting at a(3) are 5,19,65,211,665,2059,6305,... (see A001047) with 19 mod 5=4, 65 mod 19=8, 211 mod 65=16, 665 mod 211=32, 2059 mod 665=64, 6305 mod 2059=128, and so forth for higher powers of 2. - J. M. Bergot, May 09 2015
In other words, let f(n) = (3^(n-1)-1)/3^(n-1) - (2^(n-1)-1)/2^(n-1), then for n>=1 a(n) = numerator(f(n)) + denominator(f(n)). - Michel Marcus, May 29 2015

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(c), pp. 76, 112.

Crossrefs

Programs

  • Magma
    [6^(n-1)+3^(n-1)-2^(n-1): n in [1..30]] /* or */ I:=[1,7,41]; [n le 3 select I[n] else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 12 2015
  • Mathematica
    Table[6^(n-1)+3^(n-1)-2^(n-1),{n,25}] (* or *) LinearRecurrence[ {11,-36,36},{1,7,41},25] (* Harvey P. Dale, Nov 24 2011 *)
    CoefficientList[Series[(1 - 4 x)/((1 - 2 x) (1 - 3 x) (1 - 6 x)), {x, 0, 33}], x] (* Vincenzo Librandi, May 12 2015 *)
  • PARI
    a(n)=if(n<0,0,6^(n-1)+3^(n-1)-2^(n-1))
    

Formula

G.f.: x(1-4x)/((1-2x)(1-3x)(1-6x)). a(n) = 6^(n-1)+3^(n-1)-2^(n-1).
E.g.f.: e^(6*x)+e^(3*x)-e^(2*x). [Mohammad K. Azarian, Jan 16 2009]
a(1)=1, a(2)=7, a(3)=41, a(n) = 11*a(n-1)-36*a(n-2)+36*a(n-3). [Harvey P. Dale, Nov 24 2011]

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001

A069738 Number of isomorphism classes of minimal n-extensions of a kind of homeomorphism of the circle.

Original entry on oeis.org

1, 3, 7, 26, 97, 624, 4162, 34469
Offset: 1

Views

Author

Valery A. Liskovets, Apr 15 2002

Keywords

Comments

There is a formula in terms of conjugacy classes of transitive pairs and triples of permutations of degree n (A057005 and A057006).

References

  • N. G. Markley and W. N. Anderson,jun, An application of Moebius inversion to a problem in topological dynamics. Bull. Amer. Math. Soc. 79 (1973), 1027-1029.
  • V. A. Liskovets, On a combinatorial problem of the theory of topological transformations of the circle. Vesci AN BSSR (ser. fiz.-mat.), No 4 (1976), 29-34 (in Russian), Math. Rev. 58 #7575.

Crossrefs

Showing 1-3 of 3 results.