A140293 Numbers k such that k!/k#-1 is prime, where k# is the primorial function (A034386).
4, 5, 6, 7, 8, 16, 17, 21, 34, 39, 45, 50, 72, 73, 76, 133, 164, 202, 216, 221, 280, 281, 496, 605, 2532, 2967, 3337, 8711, 10977, 13724, 15250, 18160, 20943, 33684, 41400
Offset: 1
Examples
7!/7# = 5040/210 = 24. 24 - 1 = 23, which is prime.
Links
- Chris Caldwell, Compositorial
- Chris Caldwell, Compositorial list search
Programs
-
Mathematica
Select[Range[16], PrimeQ[#!/(Times@@Prime[Range[PrimePi[#]]]) - 1] &] (* Alonso del Arte, Nov 28 2014 *)
-
PARI
g(n) = for(x=4,n,y=x!/primorial(x)-1;z=nextprime(y+1); if(ispseudoprime(y),print1(x",")))
Formula
n such that n!/n# - 1 is prime, where n# is the primorial function n# = product(i = 1 .. pi(n), prime(i)), where pi(n) is the prime counting function.
Extensions
a(18)-a(27) from Giovanni Resta, Mar 28 2013
a(28)-a(30) from Giovanni Resta, Apr 02 2013
a(31) from Roger Karpin, Nov 28 2014
a(32)-a(33) from Daniel Heuer, ca Aug 2000
a(34)-a(35) from Serge Batalov, Feb 09 2015
Comments