A057094 Coefficient triangle for certain polynomials (rising powers).
0, 0, -1, 0, 0, -1, 0, 0, 1, -1, 0, 0, 0, 2, -1, 0, 0, 0, -1, 3, -1, 0, 0, 0, 0, -3, 4, -1, 0, 0, 0, 0, 1, -6, 5, -1, 0, 0, 0, 0, 0, 4, -10, 6, -1, 0, 0, 0, 0, 0, -1, 10, -15, 7, -1, 0, 0, 0, 0, 0, 0, -5, 20, -21, 8, -1, 0, 0, 0, 0, 0, 0, 1, -15, 35, -28, 9, -1, 0, 0, 0, 0, 0, 0, 0, 6, -35, 56, -36, 10, -1, 0, 0, 0, 0, 0, 0, 0, -1, 21, -70, 84
Offset: 0
Examples
Triangle begins: 0; 0, -1; 0, 0, -1; 0, 0, 1, -1; 0, 0, 0, 2, -1; 0, 0, 0, -1, 3, -1; ...
Links
- T. Copeland, Addendum to Elliptic Lie Triad
- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Note 1 and Table.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Cf. A284938 (unsigned version).
Programs
-
Mathematica
Prepend[CoefficientList[Table[I^n x^(n/2) Fibonacci[n - 1, -I Sqrt[x]], {n, 2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 06 2017 *) Prepend[CoefficientList[Table[-x^(n/2) ChebyshevU[n - 2, Sqrt[x]/2], {n, 2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
-
PARI
tabl(nn) = {for (n=0, nn, for (k=0, n, if ((n==0) || (k < n\2+1), v = 0, v = (-1)^(n-k+1)*binomial(k-1, n-k)); print1(v, ", ");); print(););} \\ Michel Marcus, Jan 14 2016
Formula
a(n, m)=0 if n= 1 and n >= m >=floor(n/2)+1; else 0.
Comments