cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057094 Coefficient triangle for certain polynomials (rising powers).

Original entry on oeis.org

0, 0, -1, 0, 0, -1, 0, 0, 1, -1, 0, 0, 0, 2, -1, 0, 0, 0, -1, 3, -1, 0, 0, 0, 0, -3, 4, -1, 0, 0, 0, 0, 1, -6, 5, -1, 0, 0, 0, 0, 0, 4, -10, 6, -1, 0, 0, 0, 0, 0, -1, 10, -15, 7, -1, 0, 0, 0, 0, 0, 0, -5, 20, -21, 8, -1, 0, 0, 0, 0, 0, 0, 1, -15, 35, -28, 9, -1, 0, 0, 0, 0, 0, 0, 0, 6, -35, 56, -36, 10, -1, 0, 0, 0, 0, 0, 0, 0, -1, 21, -70, 84
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are negative scaled Chebyshev U-polynomials: p(n,x)= -U(n-1,sqrt(x)/2)*(sqrt(x))^(n+1), n >= 1. p(0,x)=0. p(n-1,1/x) appears in the n-th power of the g.f. of Catalan's numbers A000108, c(x): (c(x))^n = p(n-1,1/x)*1 -p(n,1/x)*x*c(x). Cf. Lang reference eqs.(1) and (2).
Signed version of A284938. - Eric W. Weisstein, Apr 06 2017

Examples

			Triangle begins:
0;
0, -1;
0, 0, -1;
0, 0, 1, -1;
0, 0, 0, 2, -1;
0, 0, 0, -1, 3, -1;
...
		

Crossrefs

Cf. A284938 (unsigned version).

Programs

  • Mathematica
    Prepend[CoefficientList[Table[I^n x^(n/2) Fibonacci[n - 1, -I Sqrt[x]], {n, 2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    Prepend[CoefficientList[Table[-x^(n/2) ChebyshevU[n - 2, Sqrt[x]/2], {n, 2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, if ((n==0) || (k < n\2+1), v = 0, v = (-1)^(n-k+1)*binomial(k-1, n-k)); print1(v, ", ");); print(););} \\ Michel Marcus, Jan 14 2016

Formula

a(n, m)=0 if n= 1 and n >= m >=floor(n/2)+1; else 0.