A057112 Sequence of 719 adjacent transpositions (a[n] a[n]+1), which, when starting from the identity permutation and applied successively, produce a Hamiltonian circuit/path through all 720 permutations of S_6, in such a way that S_{n-1} is always traversed before the rest of S_n.
1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3
Offset: 1
Examples
Starting from the identity permutation and applying these transpositions (from right), we get: [1,2,3,4,5,6,...] o (1 2) -> [2,1,3,4,5,6,...] o (2 3) -> [2,3,1,4,5,6,...] o (1 2) -> [3,2,1,4,5,6,...] o (2 1) -> [3,1,2,4,5,6,...] o (1 2) -> [1,3,2,4,5,6,...] o (3 4) -> [1,3,4,2,5,6,...] o (1 2) -> [3,1,4,2,5,6,...] o (2 3) -> [3,4,1,2,5,6,...] o (3 4) etc.
Links
- Georg Fischer, Table of n, a(n) for n = 1..719
- A. Karttunen, Truncated octahedron
- G. Olshevsky, Great prismatodecachoron
- Arthur T. White, Ringing the Cosets, Amer. Math. Monthly, Vol. 94, Number 8, 1987, pp. 721-746.
- Index entries for sequences related to bell ringing
Crossrefs
Programs
-
Maple
adj_tp_seq := proc(n) local fl,fd,v; fl := fac_base(n); fd := fl[1]; if((1 = fd) and (0 = convert(cdr(fl),`+`))) then RETURN(nops(fl)); fi; if(n < 6) then RETURN(2 - (`mod`(n,2))); fi; if((0 = convert(cdr(fl),`+`)) and (n < 24)) then RETURN((nops(fl)+1)-fd); fi; if(n < 18) then if(0 = (`mod`(n,2))) then RETURN(2); else RETURN(4-(`mod`(n,4))); fi; else if(n < 24) then RETURN(2+(`mod`(n,2))); else if(n < 120) then if(0 = convert(cdr(fl),`+`)) then RETURN(nops(fl)); else RETURN(adj_tp_seq(`mod`(n,24))); fi; else if(n < 720) then if(125 = n) then RETURN(5); fi; v := (`mod`(n,5)); if(0 = v) then v := (n-125)/5; RETURN(adj_tp_seq(v)+(`mod`(v+1,2))); else if(5 > (`mod`(n,10))) then RETURN(5-v); else RETURN(v); fi; fi; else if(0 = convert(cdr(fl),`+`)) then RETURN(nops(fl)); fi; RETURN(adj_tp_seq(`mod`(n,720))); fi; fi; fi; fi; end;
Formula
tp_seq := [seq(adj_tp_seq(n), n=1..719)];
Comments