cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057119 Iterative "rewrite" sequence of binary plane trees.

Original entry on oeis.org

2, 10, 180, 47940, 3185189700, 13760582141553025860, 254536428082497193743150874618461037380, 86730091025558229301371439971941296450524845723997443510460490068605668041540
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2000

Keywords

Comments

This sequence is based on the observation that the terms of A014486 (2n-digit balanced binary sequences) encode rooted plane trees with n+1 vertices (n edges), but also rooted binary plane trees with n+1 leaves, i.e., 2n edges, 2n+1 vertices.

Examples

			We start from the simplest such binary tree: 0.0 (binary depth-first encoding = 2, from left to right, 1 with the zero of the last leaf ignored); then encode it as an ordinary rooted plane tree (depth-first-wise) to get the code 1010 = decimal 10, which in turn, when interpreted as an encoding of binary tree is:
..0.0
.0.1. (whose rooted plane tree coding is 10110100 = 180 in decimal)
..1.. etc.
		

Crossrefs

Programs

  • Maple
    a(n) = bt_df2tree_apply_k_times(2,n)
    bt_df2tree_apply_k_times := proc(n,k) option remember; if(0 = k) then (n) else bt_df2tree_apply_k_times(bintree_depth_first2tree(n),k-1); fi; end;
    bintree_depth_first2tree := n -> ((btdf2t(n*2,floor_log_2(n)+1)/2) - 2^(2*(floor_log_2(n)+1)));
    btdf2t := proc(n,ii) local i,e,x,y; i := ii; if(n >= (2^i)) then x := btdf2t(n - (2^i),i-1); i := i - ((floor_log_2(x)+1)/2); y := btdf2t((n mod (2^i)),i-1); RETURN((2^(floor_log_2(y)+2))*((2^(floor_log_2(x)+1)) + x) + 2*y); else RETURN(2); fi; end;