A057135 Palindromes whose square is a palindrome; also palindromes whose sum of squares of digits is less than 10.
0, 1, 2, 3, 11, 22, 101, 111, 121, 202, 212, 1001, 1111, 2002, 10001, 10101, 10201, 11011, 11111, 11211, 20002, 20102, 100001, 101101, 110011, 111111, 200002, 1000001, 1001001, 1002001, 1010101, 1011101, 1012101, 1100011, 1101011, 1102011, 1110111, 1111111
Offset: 1
Examples
121 is OK since 121^2=14641 is also a palindrome.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (n=1..412 from R. J. Mathar)
- P. De Geest, Subsets of Palindromic Squares
Programs
-
Maple
dmax:= 7: # to get all terms with up to dmax digits Res:= 0,1,2,3,11,22: Po:= [[0],[1],[2],[3]]: Pe:= [[0,0],[1,1],[2,2]]: for d from 1 to dmax do if d::odd then Po:= select(t -> add(s^2,s=t) < 10, [seq(seq([i,op(t),i], t=Po),i=0..2)]); Res:= Res, op(map(proc(p) if p[1] <> 0 then add(p[i]*10^(i-1),i=1..nops(p)) fi end proc, Po)) else Pe:= select(t -> add(s^2,s=t) < 10, [seq(seq([i,op(t),i], t=Pe),i=0..2)]); Res:= Res, op(map(proc(p) if p[1] <> 0 then add(p[i]*10^(i-1),i=1..nops(p)) fi end proc, Pe)) fi; od: Res; # Robert Israel, Jun 21 2017
-
Mathematica
PalQ[n_] := FromDigits[Reverse[IntegerDigits[n]]] == n; t = {}; Do[ If[PalQ[n] && PalQ[n^2], AppendTo[t, n]], {n, 0, 1200000}]; t (* Jayanta Basu, May 10 2013 *) Select[Range[0,12*10^5],AllTrue[{#,#^2},PalindromeQ]&](* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 20 2018 *)
-
PARI
is(n) = digits(n)==Vecrev(digits(n)) && digits(n^2)==Vecrev(digits(n^2)) \\ Felix Fröhlich, Jun 21 2017
Formula
a(n) = sqrt(A057136(n))
Extensions
1001001 inserted by R. J. Mathar, Nov 04 2012