cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057150 Triangle read by rows: T(n,k) = number of k X k binary matrices with n ones, with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 5, 2, 1, 0, 0, 4, 11, 2, 1, 0, 0, 3, 21, 14, 2, 1, 0, 0, 1, 34, 49, 15, 2, 1, 0, 0, 1, 33, 131, 69, 15, 2, 1, 0, 0, 0, 33, 248, 288, 79, 15, 2, 1, 0, 0, 0, 19, 410, 840, 420, 82, 15, 2, 1, 0, 0, 0, 14, 531, 2144, 1744, 497, 83, 15, 2, 1
Offset: 1

Views

Author

Vladeta Jovovic, Aug 14 2000

Keywords

Comments

Also the number of non-isomorphic set multipartitions (multisets of sets) of weight n with k parts and k vertices. - Gus Wiseman, Nov 14 2018

Examples

			[1], [0,1], [0,1,1], [0,1,2,1], [0,0,5,2,1], [0,0,4,11,2,1], ...;
There are 8 square binary matrices with 5 ones, with no zero rows or columns, up to row and column permutation: 5 of size 3 X 3:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 1 0] [0 1 1] [0 1 1] [1 1 0]
[1 1 1] [1 1 1] [1 0 1] [1 1 0] [1 1 0]
2 of size 4 X 4:
[0 0 0 1] [0 0 0 1]
[0 0 0 1] [0 0 1 0]
[0 0 1 0] [0 1 0 0]
[1 1 0 0] [1 0 0 1]
and 1 of size 5 X 5:
[0 0 0 0 1]
[0 0 0 1 0]
[0 0 1 0 0]
[0 1 0 0 0]
[1 0 0 0 0].
From _Gus Wiseman_, Nov 14 2018: (Start)
Triangle begins:
   1
   0   1
   0   1   1
   0   1   2   1
   0   0   5   2   1
   0   0   4  11   2   1
   0   0   3  21  14   2   1
   0   0   1  34  49  15   2   1
   0   0   1  33 131  69  15   2   1
   0   0   0  33 248 288  79  15   2   1
Non-isomorphic representatives of the multiset partitions counted in row 6 {0,0,4,11,2,1} are:
  {{12}{13}{23}}  {{1}{1}{1}{234}}  {{1}{2}{3}{3}{45}}  {{1}{2}{3}{4}{5}{6}}
  {{1}{23}{123}}  {{1}{1}{24}{34}}  {{1}{2}{3}{5}{45}}
  {{13}{23}{23}}  {{1}{1}{4}{234}}
  {{3}{23}{123}}  {{1}{2}{34}{34}}
                  {{1}{3}{24}{34}}
                  {{1}{3}{4}{234}}
                  {{1}{4}{24}{34}}
                  {{1}{4}{4}{234}}
                  {{2}{4}{12}{34}}
                  {{3}{4}{12}{34}}
                  {{4}{4}{12}{34}}
(End)
		

Crossrefs

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[Product[Product[(1 + O[x]^(k + 1) + x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}], {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := M[m, n, k] = Module[{s = 0}, Do[Do[s += permcount[p]* permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    T[n_, k_] := M[k, k, n] - 2*M[k, k - 1, n] + M[k - 1, k - 1, n];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 10 2019, after Andrew Howroyd *)
  • PARI
    \\ See A321609 for M.
    T(n,k) = M(k,k,n) - 2*M(k,k-1,n) + M(k-1,k-1,n); \\ Andrew Howroyd, Nov 14 2018

Extensions

Duplicate seventh row removed by Gus Wiseman, Nov 14 2018