A057205 Primes congruent to 3 modulo 4 generated recursively: a(n) = Min_{p, prime; p mod 4 = 3; p|4Q-1}, where Q is the product of all previous terms in the sequence. The initial term is 3.
3, 11, 131, 17291, 298995971, 8779, 594359, 59, 151, 983, 19, 38851089348584904271503421339, 2359886893253830912337243172544609142020402559023, 823818731, 2287, 7, 9680188101680097499940803368598534875039120224550520256994576755856639426217960921548886589841784188388581120523, 163, 83, 1471, 34211, 2350509754734287, 23567
Offset: 1
Keywords
Examples
a(4) = 17291 = 4*4322 + 3 is the smallest prime divisor congruent to 3 (mod 4) of Q = 3*11*131 - 1 = 17291.
References
- P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
Programs
-
Mathematica
a={3}; q=1; For[n=2,n<=7,n++, q=q*Last[a]; AppendTo[a,Min[Select[FactorInteger[4*q-1][[All,1]],Mod[#,4]==3&]]]; ]; a (* Robert Price, Jul 18 2015 *)
Extensions
More terms from Phil Carmody, Sep 18 2005
Terms corrected and extended by Sean A. Irvine, Oct 23 2014