A057208 Primes of the form 8k+5 generated recursively: a(1)=5, a(n) = least prime p == 5 (mod 8) with p | 4+Q^2, where Q is the product of all previous terms in the sequence.
5, 29, 1237, 32171803229, 829, 405565189, 14717, 39405395843265000967254638989319923697097319108505264560061, 282860648026692294583447078797184988636062145943222437, 53, 421, 13, 109, 4133, 6476791289161646286812333, 461, 34549, 453690033695798389561735541
Offset: 1
Keywords
Examples
a(3) = 1237 = 8*154 + 5 is the smallest suitable prime divisor of (5*29)*5*29 + 4 = 21029 = 17*1237. (Although 17 is the smallest prime divisor, 17 is not congruent to 5 modulo 8.)
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
Links
- P. G. L. Dirichlet, Supplement VI: Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, 1871, 24 pages.
Programs
-
Mathematica
a={5}; q=1; For[n=2,n<=7,n++, q=q*Last[a]; AppendTo[a,Min[Select[FactorInteger[4+q^2][[All,1]],Mod[#,8]==5 &]]]; ]; a (* Robert Price, Jul 16 2015 *)
-
PARI
lista(nn) = {v = vector(nn); v[1] = 5; print1(v[1], ", "); for (n=2, nn, f = factor(4 + prod(k=1, n-1, v[k])^2); for (k=1, #f~, if (f[k, 1] % 8 == 5, v[n] = f[k,1]; break);); print1(v[n], ", "););} \\ Michel Marcus, Oct 27 2014
Extensions
More terms from Sean A. Irvine, Oct 26 2014