cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A057291 Numbers k such that k | 12^k + 11^k + 10^k + 9^k + 8^k + 7^k + 6^k + 5^k + 4^k + 3^k + 2^k + 1^k.

Original entry on oeis.org

1, 2, 3, 9, 10, 13, 26, 27, 39, 50, 81, 110, 117, 130, 169, 243, 250, 279, 310, 338, 351, 470, 507, 550, 650, 663, 729, 1053, 1209, 1250, 1430, 1521, 1550, 1690, 2187, 2197, 2750, 3159, 3250, 3410, 4030, 4043, 4069, 4394, 4509, 4563, 6250, 6561, 6591, 7150
Offset: 1

Views

Author

Robert G. Wilson v, Sep 22 2000

Keywords

Comments

The only primes in the sequence are 2, 3 and 13. - Robert Israel, Jun 25 2025

Crossrefs

Programs

  • Maple
    filter:= n -> 12&^n + 11&^n + 10&^n + 9&^n + 8&^n + 7&^n + 6&^n + 5&^n + 4&^n + 3&^n + 2&^n + 1 mod n = 0:
    select(filter, [$1..10^4]); # Robert Israel, Jun 25 2025
  • Mathematica
    Select[ Range[ 10^5 ], Mod[ PowerMod[ 12, #, # ] + PowerMod[ 11, #, # ] + PowerMod[ 10, #, # ] + PowerMod[ 9, #, # ] + PowerMod[ 8, #, # ] + PowerMod[ 7, #, # ] + PowerMod[ 6, #, # ] + PowerMod[ 5, #, # ] + PowerMod[ 4, #, # ] + PowerMod[ 3, #, # ] + PowerMod[ 2, #, # ] + 1, # ] == 0 & ]
    Select[Range[7200],Divisible[Total[Range[12]^#],#]&] (* Harvey P. Dale, Aug 05 2017 *)

A056739 Numbers k such that k | 10^k + 9^k + 8^k + 7^k + 6^k + 5^k + 4^k + 3^k + 2^k + 1^k.

Original entry on oeis.org

1, 5, 11, 25, 55, 121, 125, 275, 365, 605, 625, 925, 1331, 1375, 2365, 3025, 3125, 6655, 6875, 14641, 15125, 15625, 22625, 27565, 32125, 33275, 34375, 73205, 75625, 78125, 123365, 161051, 166375, 171875, 366025, 378125, 390625, 541717, 660605
Offset: 1

Views

Author

Robert G. Wilson v, Aug 25 2000

Keywords

Comments

Contains A003598. In general n=p^i * q^j => n | Sum_{k=1..2*p} k^n, where p and q=2*p+1 are prime (see Meyer ref).
All terms == 1 or 5 (mod 6). The only prime terms are 5 and 11. - Robert Israel, Jun 25 2025

Crossrefs

Programs

  • Maple
    filter:= n ->   10 &^n + 9 &^ n + 8 &^ n + 7 &^ n + 6&^ n + 5&^n + 4&^n + 3&^n + 2&^n + 1 mod n = 0:
    select(filter, [seq(seq(6*i + j, j=[1,5]),i=0..10^6)]); # Robert Israel, Jun 25 2025
  • Mathematica
    Do[ If[ Mod[ PowerMod[ 10, n, n ] + PowerMod[ 9, n, n ] + PowerMod[ 8, n, n ] + PowerMod[ 7, n, n ] + PowerMod[ 6, n, n ] + PowerMod[ 5, n, n ] + PowerMod[ 4, n, n ] + PowerMod[ 3, n, n ] + PowerMod[ 2, n, n ] + 1, n ] == 0, Print[ n ] ], {n, 1, 10^6} ]
    Select[Range[700000],Divisible[Total[Range[10]^#],#]&] (* Harvey P. Dale, Nov 24 2014 *)
    Select[Range[700000],Mod[Total[PowerMod[Range[10],#,#]],#]==0&] (* Harvey P. Dale, Feb 23 2023 *)

A056741 Numbers k such that k | 5^k + 4^k + 3^k + 2^k + 1^k.

Original entry on oeis.org

1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, 135, 225, 243, 261, 295, 375, 405, 625, 675, 729, 925, 1125, 1215, 1875, 2025, 2187, 3125, 3375, 3645, 4077, 4833, 5139, 5625, 6075, 6345, 6561, 9375, 10125, 10935, 15625, 16875, 17895, 18125, 18225, 18495, 19683
Offset: 1

Views

Author

Robert G. Wilson v, Aug 25 2000

Keywords

Comments

All terms are odd. The only primes in the sequence are 3 and 5. - Robert Israel, Jun 25 2025

Crossrefs

Programs

  • Maple
    filter:= n ->   5&^n + 4&^n + 3&^n + 2&^n + 1 mod n = 0:
    select(filter, [seq(i,i=1..10^5,2)]); # Robert Israel, Jun 25 2025
  • Mathematica
    Do[ If[ Mod[ PowerMod[ 5, n, n ] + PowerMod[ 4, n, n ] + PowerMod[ 3, n, n ] + PowerMod[ 2, n, n ] + 1, n ] == 0, Print[ n ] ], {n, 1, 10^6} ]
    Select[Range[20000],Mod[Total[PowerMod[Range[0,5],#,#]],#]==0&] (* Harvey P. Dale, Oct 09 2021 *)

A385314 a(n) is the least positive integer m such that Sum_{k = 1 .. m} k^n is divisible by n.

Original entry on oeis.org

1, 3, 2, 7, 4, 4, 6, 15, 2, 4, 10, 8, 12, 3, 5, 31, 16, 27, 18, 24, 6, 11, 22, 31, 4, 12, 2, 7, 28, 4, 30, 63, 11, 8, 14, 40, 36, 19, 12, 31, 40, 8, 42, 16, 5, 11, 46, 31, 6, 4, 17, 32, 52, 40, 10, 31, 18, 28, 58, 31, 60, 15, 6, 127, 4, 27, 66, 8, 23, 7, 70, 80, 72, 36, 5, 47, 6, 36, 78, 31, 2
Offset: 1

Views

Author

Robert Israel, Jun 25 2025

Keywords

Comments

If p is an odd prime, a(p) = p - 1.
If n > 1 is odd, a(n) <= n - 1.
For all n, a(n) <= n^2 - 1.

Examples

			a(3) = 2 because 1^3 + 2^3 = 9 is divisible by 3, while 1^3 is not.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,t;
      t:= 0:
      for k from 1 do
        t:= t + k &^ n mod n;
        if t = 0 then return k fi;
      od:
    end proc:
    map(f, [$1..100]);
  • Mathematica
    a[n_]:=Module[{m=1},While[!Divisible[Sum[k^n,{k,1,m}],n],m++];m];Array[a,81] (* James C. McMahon, Jun 25 2025 *)
  • PARI
    a(n) = my(m=1); while(sum(k=1, m, k^n) % n, m++); m; \\ Michel Marcus, Jun 25 2025
Showing 1-4 of 4 results.