A057370
Numbers k that can be expressed as k = w+x = y*z with w*x = (y+z)^3 where w, x, y, and z are all positive integers.
Original entry on oeis.org
1024, 1296, 1458, 2240, 2500, 2592, 3072, 3744, 3750, 5642, 5796, 6480, 6561, 8526, 9900, 10400, 11250, 11340, 12005, 14580, 15552, 22500, 25296, 29792, 40850, 46080, 47025, 52500, 57024, 76832, 78750, 99008, 101376, 107604, 111537, 122636, 138125, 140625, 153900
Offset: 1
a(1) = 1024 = 512+512 = 32*32; 512*512 = (32+32)^3.
-
is(k) = fordiv(k, y, if(issquare(k^2 - 4*(y+k/y)^3), return(1))); 0; \\ Jinyuan Wang, May 01 2021
More terms and clearer definition from
Jinyuan Wang, May 01 2021
A057371
Numbers k that can be expressed as k = w+x = y*z with w*x = k*(y+z) where w, x, y, and z are all positive integers.
Original entry on oeis.org
64, 72, 81, 100, 108, 125, 128, 216, 225, 288, 324, 500, 576, 864, 972, 1125, 1152, 1225, 1800, 2025, 2700, 3125, 3200, 3528, 4500, 7776, 8100, 10125, 13068, 13689, 15488, 17496, 18496, 21125, 24500, 28800, 34848, 42336, 44100, 48672, 55225, 69696, 93636, 95256
Offset: 1
64 is a term because a solution exists at k=64, w=32, x=32, y=8, z=8:
k = w + x = y*z with w*x = k*(y+z)
becomes
64 = 32 + 32 = 8*8 with 32*32 = 64*(8+8).
-
is(k) = fordiv(k, y, if(issquare(k^2 - 4*k*(y+k/y)), return(1))); 0; \\ Jinyuan Wang, May 01 2021
A057372
Numbers k that can be expressed as k = w + x = y*z with w*x = y^3 + z^3 where w, x, y, and z are all positive integers.
Original entry on oeis.org
64, 81, 96, 140, 153, 162, 288, 294, 561, 588, 972, 1056, 1250, 1344, 1881, 2070, 2205, 2880, 3125, 3168, 5073, 5100, 7500, 7776, 7840, 10206, 11466, 11481, 11840, 15680, 16416, 19360, 20384, 21250, 22833, 24300, 25070, 27500, 27885, 31008, 32805, 33600, 37664
Offset: 1
-
is(k) = fordiv(k, y, if(issquare(k^2 - 4*y^3 - 4*(k/y)^3), return(1))); 0; \\ Jinyuan Wang, May 02 2021
A057373
Numbers k that can be expressed as k = w + x = y*z with w*x = y^2 + z^2 where w, x, y, and z are all positive integers.
Original entry on oeis.org
9, 18, 45, 90, 117, 306, 522, 585, 801, 1305, 2097, 3042, 3978, 5490, 8730, 14373, 17730, 19485, 22698, 27234, 37629, 44109, 98514, 103338, 113013, 130365, 155025, 186633, 257913, 290970, 405450, 602298, 675225, 884637, 1279170, 1498185, 1767762, 1946745
Offset: 1
-
filter:= proc(n) local x;
nops(select(x -> issqr(n^2-4*x^2 - 4*(n/x)^2), numtheory:-divisors(n)))>0;
end proc:
select(filter, [$1..10^6]); # Robert Israel, Feb 01 2016
-
filterQ[n_] := Length@Select[Divisors[n], IntegerQ@Sqrt[n^2 - 4*#^2 - 4*(n/#)^2]&] > 0;
Select[Range[9, 999999, 9], filterQ] (* Jean-François Alcover, Jan 31 2023, after Robert Israel *)
-
is(k) = fordiv(k, y, if(issquare(k^2 - 4*y^2 - 4*sqr(k/y)), return(1))); 0; \\ Jinyuan Wang, May 02 2021
A057442
For the numbers k that can be expressed as k = w+x = y*z with w*x = (y+z)^2 where w, x, y, and z are all positive integers, this sequence gives the corresponding values of w*x.
Original entry on oeis.org
64, 81, 100, 324, 225, 576, 2025, 1225, 8100, 8100, 44100, 69696, 13689, 8100, 342225, 18496, 189225, 272484, 1703025, 3744225, 93636, 55225, 15824484, 13017664, 21996100, 5832225, 2005056, 641601, 378225, 627264, 741690756, 2592100, 37088100, 2518433856, 1961604100
Offset: 1
From _Jon E. Schoenfield_, May 10 2021: (Start)
The first 10 values of k listed in A057369 and their corresponding values of w, x, y, z, and w*x are as follows:
.
n k w x y z w*x = a(n)
-- --- -- --- -- -- ----------
1 16 8 8 4 4 64
2 18 9 9 3 6 81
3 25 5 20 5 5 100
4 45 9 36 3 15 324
5 50 5 45 5 10 225
6 80 8 72 4 20 576
7 234 9 225 6 39 2025
8 250 5 245 10 25 1225
9 261 36 225 3 87 8100
10 425 20 405 5 85 8100
(End)
A343860
For the numbers k that can be expressed as k = w+x = y*z with w*x = (y+z)^2 where w, x, y, and z are all positive integers, this sequence gives the corresponding values of y+z.
Original entry on oeis.org
8, 9, 10, 18, 15, 24, 45, 35, 90, 90, 210, 264, 117, 90, 585, 136, 435, 522, 1305, 1935, 306, 235, 3978, 3608, 4690, 2415, 1416, 801, 615, 792, 27234, 1610, 6090, 50184, 44290, 3042, 44109, 8730, 22698, 41615, 2097, 1610, 107535, 186633, 46104, 40410, 19485
Offset: 1
t^2 - (3+15)*t + 3*15 = 0 has roots p=3 and q=15, and
t^2 - (9+36)*t + 9*36 = 0 has roots u=9 and v=36, and
3*15 = 9+36 and (3+15)^2 = 9*36, so k = 3+15 = 18 is a term of this sequence.
--
The first 10 values of k listed in A057369 and their corresponding values of w, x, y, z, and y+z are as follows:
.
n k w x y z y+z = a(n)
-- --- -- --- -- -- ----------
1 16 8 8 4 4 8
2 18 9 9 3 6 9
3 25 5 20 5 5 10
4 45 9 36 3 15 18
5 50 5 45 5 10 15
6 80 8 72 4 20 24
7 234 9 225 6 39 45
8 250 5 245 10 25 35
9 261 36 225 3 87 90
10 425 20 405 5 85 90
-
forstep(k=1, 1000, 1, fordiv(k, y, if(issquare(k^2 - 4*(y+k/y)^2), print1(y+k/y, ", "); break)));
Showing 1-6 of 6 results.
Comments