cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A057369 Numbers k that can be expressed as k = w+x = y*z with w*x = (y+z)^2 where w, x, y, and z are all positive integers.

Original entry on oeis.org

16, 18, 25, 45, 50, 80, 234, 250, 261, 425, 1025, 1040, 1530, 1625, 1746, 2320, 4250, 7605, 7794, 9650, 10413, 11050, 11925, 14416, 23425, 24050, 27920, 71298, 75650, 78416, 81693, 129625, 151625, 200720, 221425, 257085, 264618, 338949, 340245, 416050, 488610
Offset: 1

Views

Author

Naohiro Nomoto, Sep 23 2000

Keywords

Examples

			a(1) = 16 = 8+8 = 4*4; 8*8 = (4+4)^2.
		

Crossrefs

Programs

  • PARI
    is(k) = fordiv(k, y, if(issquare(k^2 - 4*(y+k/y)^2), return(1))); 0; \\ Jinyuan Wang, May 01 2021

Extensions

More terms from Jinyuan Wang, May 01 2021

A057370 Numbers k that can be expressed as k = w+x = y*z with w*x = (y+z)^3 where w, x, y, and z are all positive integers.

Original entry on oeis.org

1024, 1296, 1458, 2240, 2500, 2592, 3072, 3744, 3750, 5642, 5796, 6480, 6561, 8526, 9900, 10400, 11250, 11340, 12005, 14580, 15552, 22500, 25296, 29792, 40850, 46080, 47025, 52500, 57024, 76832, 78750, 99008, 101376, 107604, 111537, 122636, 138125, 140625, 153900
Offset: 1

Views

Author

Naohiro Nomoto, Sep 23 2000

Keywords

Examples

			a(1) = 1024 = 512+512 = 32*32; 512*512 = (32+32)^3.
		

Crossrefs

Programs

  • PARI
    is(k) = fordiv(k, y, if(issquare(k^2 - 4*(y+k/y)^3), return(1))); 0; \\ Jinyuan Wang, May 01 2021

Extensions

More terms and clearer definition from Jinyuan Wang, May 01 2021

A057371 Numbers k that can be expressed as k = w+x = y*z with w*x = k*(y+z) where w, x, y, and z are all positive integers.

Original entry on oeis.org

64, 72, 81, 100, 108, 125, 128, 216, 225, 288, 324, 500, 576, 864, 972, 1125, 1152, 1225, 1800, 2025, 2700, 3125, 3200, 3528, 4500, 7776, 8100, 10125, 13068, 13689, 15488, 17496, 18496, 21125, 24500, 28800, 34848, 42336, 44100, 48672, 55225, 69696, 93636, 95256
Offset: 1

Views

Author

Naohiro Nomoto, Sep 23 2000

Keywords

Comments

All terms are powerful (A001694).

Examples

			64 is a term because a solution exists at k=64, w=32, x=32, y=8, z=8:
             k =  w + x  = y*z   with    w*x  =  k*(y+z)
becomes
            64 = 32 + 32 = 8*8   with   32*32 = 64*(8+8).
		

Crossrefs

Programs

  • PARI
    is(k) = fordiv(k, y, if(issquare(k^2 - 4*k*(y+k/y)), return(1))); 0; \\ Jinyuan Wang, May 01 2021

Extensions

More terms from Jinyuan Wang, May 01 2021

A057372 Numbers k that can be expressed as k = w + x = y*z with w*x = y^3 + z^3 where w, x, y, and z are all positive integers.

Original entry on oeis.org

64, 81, 96, 140, 153, 162, 288, 294, 561, 588, 972, 1056, 1250, 1344, 1881, 2070, 2205, 2880, 3125, 3168, 5073, 5100, 7500, 7776, 7840, 10206, 11466, 11481, 11840, 15680, 16416, 19360, 20384, 21250, 22833, 24300, 25070, 27500, 27885, 31008, 32805, 33600, 37664
Offset: 1

Views

Author

Naohiro Nomoto, Sep 24 2000

Keywords

Crossrefs

Programs

  • PARI
    is(k) = fordiv(k, y, if(issquare(k^2 - 4*y^3 - 4*(k/y)^3), return(1))); 0; \\ Jinyuan Wang, May 02 2021

Extensions

New name and more terms from Jinyuan Wang, May 02 2021

A057444 For the numbers k that can be expressed as k = w + x = y*z with w*x = y^2 + z^2 where w, x, y, and z are all positive integers, this sequence gives the corresponding values of w*x.

Original entry on oeis.org

18, 45, 234, 261, 1530, 10413, 7605, 1746, 71298, 7794, 488610, 257085, 11925, 3348909, 338949, 22953690, 8732061, 1687626, 340245, 81693, 157326858, 264618, 1078334253, 296631765, 1694970, 75533706, 15802146, 559890, 7391012850, 376282629, 15811029, 10076746725
Offset: 1

Views

Author

Naohiro Nomoto, Sep 24 2000

Keywords

Crossrefs

Cf. A057373.

Extensions

New name and more terms from Jinyuan Wang, May 02 2021
Showing 1-5 of 5 results.