A057373 Numbers k that can be expressed as k = w + x = y*z with w*x = y^2 + z^2 where w, x, y, and z are all positive integers.
9, 18, 45, 90, 117, 306, 522, 585, 801, 1305, 2097, 3042, 3978, 5490, 8730, 14373, 17730, 19485, 22698, 27234, 37629, 44109, 98514, 103338, 113013, 130365, 155025, 186633, 257913, 290970, 405450, 602298, 675225, 884637, 1279170, 1498185, 1767762, 1946745
Offset: 1
Keywords
Programs
-
Maple
filter:= proc(n) local x; nops(select(x -> issqr(n^2-4*x^2 - 4*(n/x)^2), numtheory:-divisors(n)))>0; end proc: select(filter, [$1..10^6]); # Robert Israel, Feb 01 2016
-
Mathematica
filterQ[n_] := Length@Select[Divisors[n], IntegerQ@Sqrt[n^2 - 4*#^2 - 4*(n/#)^2]&] > 0; Select[Range[9, 999999, 9], filterQ] (* Jean-François Alcover, Jan 31 2023, after Robert Israel *)
-
PARI
is(k) = fordiv(k, y, if(issquare(k^2 - 4*y^2 - 4*sqr(k/y)), return(1))); 0; \\ Jinyuan Wang, May 02 2021
Extensions
a(19)-a(38) from Robert Israel, Feb 01 2016
New name from Jinyuan Wang, May 02 2021
Comments