cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A133106 Number of Ferrers diagrams with a single Ferrers puncture with the same orientation inscribed strictly inside with half-perimeter = n.

Original entry on oeis.org

1, 8, 41, 168, 602, 1968, 6021, 17512, 48950, 132496, 349258, 900368, 2277556, 5667936, 13906221, 33695208, 80746846, 191601872, 450642654, 1051472048, 2435679852, 5605044640, 12820922530, 29164511376, 66004709148, 148678206880
Offset: 8

Views

Author

Arvind Ayyer, Sep 11 2007

Keywords

Examples

			The sequence starts with n=8 because the smallest such object whose cartoon is below has a perimeter of 16. (1 denotes cell outside the puncture and 2 denotes cell inside the puncture).
111
121
111
		

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[(1-(1-4x^2)^(1/2))x^6/(2(2x-1)^4),{x,0,40}],x],8] (* Harvey P. Dale, Sep 21 2024 *)

Formula

a(n) = [(2*n^2-16*n+6)*a(n-1)+(4*n^2-68*n+240)*a(n-2)-(8*n^2-88*n+240)*a(n-3)]/(n^2-14*n+48) with a(6)=0, a(7)=0, a(8)=1.
G.f.: (1-(1-4*x^2)^(1/2))*x^6/(2*(2*x-1)^4).

A133107 Number of Ferrers diagrams with a single strictly smaller Ferrers puncture with the same orientation removed from the top with half-perimeter = n.

Original entry on oeis.org

1, 7, 32, 121, 410, 1294, 3888, 11273, 31826, 88041, 239734, 644758, 1717191, 4538129, 11919760, 31156313, 81125827, 210604604, 545462798, 1410226551, 3641097828, 9391872711, 24208902420, 62373915102, 160663604377
Offset: 6

Views

Author

Arvind Ayyer, Sep 11 2007

Keywords

Examples

			The sequence starts with n=6 because the smallest such object whose illustration is below has a perimeter of 12. (1 denotes cell inside the Ferrers diagram.)
1 1
111
		

Crossrefs

Formula

G.f.: x^2*(-1 + 3*x - x^2 + (5*x^4 - 6*x^3 + 11*x^2 - 6*x + 1 + 4*x^6 - 12*x^5)^(1/2))/(2*(x^2 - 3*x + 1)*(1-2*x)^2)

A057409 Number of self-avoiding polygons of area n with any number of (self-avoiding polygon) holes on square lattice (not allowing rotations).

Original entry on oeis.org

1, 2, 6, 19, 63, 216, 756, 2685, 9650, 35018, 128084, 471623, 1746492, 6499356, 24290272, 91123171, 342984175, 1294829776, 4901319978, 18597856445, 70723784744, 269486503694, 1028736811230, 3933715966653
Offset: 1

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

Cf. A006724 (no holes, first differs at n=8), A057406, A057407, A057408 (resp. 1, 2, 3 holes); A001168 (any holes, first differs at n=7); A088702 (by perimeter); A000104 (no holes, rotations and reflections allowed).
Showing 1-3 of 3 results.